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Abstract 

Simple linear regression is reviewed. Some well known facts are analyzed 

from different approaches. Some new formulas and equations are posted and 

discussed. 
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Hypothesis 

  

 Let’s assume that we have two series of experimental measurements X = x1…xn and Y 

= y1..yn on which we suppose that a linear dependence exists: 

X, Y linear dependent (1) 

 

 

  Algebraic approach 

  

 The general formula for a linear dependence can be written as: 

aX + bY + c = 0 ⇔ aX + bY = -c (2) 
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 In terms of linear algebra our system (2) has three unknowns (a, b, and c) for only two 

known (X and Y). In order to provide a finite solution we must reduce the number of 

unknowns. Let us analyze the values of coefficients. Eight cases are presented in Table 1, for 

a, b, and c in terms of (0, ≠0): 

Table 1. Cases for a, b, and c 
Cases 1 2 3 4 5 6 7 8 

a =0 ≠0 =0 ≠0 =0 ≠0 =0 ≠0
b =0 =0 ≠0 ≠0 =0 =0 ≠0 ≠0
c =0 =0 =0 =0 ≠0 ≠0 ≠0 ≠0

  
 Case 1 is the trivial case (0 = 0, and it fit for any (X,Y) pair of data). Case 5 goes to an 

impossibility (c = 0 for c≠0). Cases 2 (aX = 0), 3 (bY = 0), 6 (aX + c =0), and 7 (bY + c = 0) 

are in disagreement with hypothesis (1). 

 For further discussions it remains only cases 4 (aX + bY = 0) and 8 (aX + bY + c = 0). 

Note that in these cases neither of coefficients is null. The following table contains variants of 

the above described two cases: 

 
Table 2. Linear dependences for (X, Y) 

aX+bY=0 (Case 4) aX+bY+c=0 (Case 8) 
0 1 2 0 1 2 3 

aX+bY=0 X+nY=0 mX+Y=0 aX+bY+c=0 X+nY+p=0 mX+Y+p=0 mX+nY+1=0
 
 In the table 3, elementary transformations to the equations from table 2 were applied. 

In addition, remarks are made. 

 
Table 3. Cases analysis (variants of cases from table 2) 

Variant Equation Remarks - statistical imposed assumptions 
4.0 aX+bY=0 particular case of 8.0 
4.1 X=-nY X: dependent variable; Y: independent variable 
4.2 Y=-mX Y: dependent variable; X: independent variable 
8.0 aX+bY=-c both X and Y are dependent/independent variables 
8.1 X=-nY-p X: dependent variable; Y: independent variable 
8.2 Y=-mX-p Y: dependent variable; X: independent variable 
8.3 mX+nY=-1 particular case of 8.0 

 
 Note that we usually do (with any of well-known software’s) the variants 4.1 & 4.2 

and 8.1 & 8.2. So, the most interesting to analyze are 4.0 and 8.3, which are particular cases 

of 8.0. 

 Usually, we assign as “dependent variable” a variable which comes from experiment 

and which is affected by experimental random errors, and we assign as “independent 
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variable” a variable (which comes from experiment (?) - this statement open a discussion) and 

which is not affected by experimental random errors. 

 Nevertheless, what we must to do when both variables are affected by errors? 

Definitely, as we already seen in table 3, is not a good idea to use any of 4.1, 4.2, 8.1 or 8.2 

assumptions. 

 Let us go back to our hypothesis (1) and let us set all our cases variants as 

f(vars,coefs) = 0 (table 4, as in table 2): 

 
Table 4. Linear regression equation as function 

Variant Equation Function for f = 0 
4.0 aX+bY=0 f({X,Y},{a,b}) = aX+bY 
4.1 X+nY=0 f({X,Y},{b}) = X+bY 
4.2 mX+Y=0 f({X,Y},{a}) = aX+Y 
8.0 aX+bY+c=0 f({X,Y},{a,b,c}) = aX+bY+c 
8.1 X+nY+p=0 f({X,Y},{b,c}) = X+bY+c 
8.2 mX+Y+p=0 f({X,Y},{a,c}) = aX+Y+c 
8.3 mX+nY+1=0 f({X,Y},{a,b}) = aX+bY+1 

  
 As it can be observed from table 3, all other are particular cases of 8.0. So, we will 

discuss all in general related to 8.0. 

 A sum function can be constructed in terms of deviations from the model: 

S = ∑|f({xi,yi},{a,b,c})|k, k > 0 (3) 

where sum are applied for all experimental measurements (from 1 to n). Note that in order to 

be consistent the definition (3), the modulus function must be used. 

 In terms of estimation, a, b, and c are called model parameters, and X, Y are 

dependent and/or independent variables (see also [1]). In terms of analysis, S is a function that 

depends on a, b and c as variables (unknown values) and X, Y and k as fixed (known) values. 

In terms of algebra, not all variables are allowed to vary in order to find a non-banal solution 

(null values - see also Eq. 4). Therefore, we must set one parameter. 

 Let us rewrite (3) in general case 8.0: 

S(a,b,c) = ∑|aX+bY+c|k, k>0, one of a, b and c is set (4) 

 How will affect a single measurement error the value of S? - see (5). Let us take a term 

of S: 

Si(a,b,c) = |axi+byi+c|k  (5) 
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 If xi = x0i+erxi, then Si = |ax0i+aerxi+byi+c|k = |aerxi+(ax0i+byi+c)|k. Thus, an absolute 

error of xi (erxi, not absolute in term of modulus, absolute in term of error, with same 

measurement unit with X) will be propagated as absolute error of S. 

 In some cases, we know more about our experimental errors. 

 Let’s say, if we use an absolute method of measurement (such as mass measurement) 

then our error is an absolute one (in terms of measurement scale), and it remains the same as 

long as we use the same scale. In these cases, our preferred error expressions must be the 

absolute error. The opposite case, if we use a relative method of measurement (such as 

instrumental methods) then our error is a relative one (in terms of calibration accuracy), and it 

remains the same as long as we use the same calibration. In these cases, our preferred error 

expressions must be the relative error. 

 Nevertheless, we have two measured variables! What we have to do? - See (4, 6) 

 Coming back to the equation (4), we can weight the terms: 

S(a,b,c) = ∑|aξX+bηY+c|k, k>0, ξ,η weights (known values) (6) 

where ξ = 1 if X has absolute errors and ξ = 1/M(X) if X has revalive errors and M(X) is the 

aritmetic mean of X values, and the same for η and Y. 

 What we have to do now? - To find the values of a, b, and c by imposing to S to be 

lowest: 

S(a,b,c) = min (7) 

 First pure mathematical problem comes now. Why? - Because we have modulus 

function f(·) = |·| in our formula, which is a continue and derivable function but with 

discontinue derivative. This is the reason for which we prefer even values for k (usually 2, we 

will see why). Anyway, (7) can be expressed in terms of derivatives: 

∂S/∂coefs = 0 (8) 

 The equation (8) is a system of equations, which for k≠2 is not linear. Taking as 

example the case 4.2 for k=4 and solving of (9) is equivalent to solving of: 

m3(∑X4)+3m2(∑X3Y)+3m(∑X2Y2)+(∑XY3)=0 (9) 

 For cases that are more general or for higher k values, solving of (8) leads to equations 

that are far more complicated. This is the reason for which we prefer k = 2. So, we fit now on 

well known “minimizing of sum of partial least squares method”. Rewriting of (6) for k = 2 

leads to: 

∑ξX(aξX+bηY+c) = ∑ηY(aξX+bηY+c) = ∑(aξX+bηY+c) = 0 (10)
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 By using M(·) as average operator M(·) = ∑(·)/n equations (10) became: 

a·ξ2·M(X2)+b·ξ·η·M(XY)+c·ξ·M(X) = 0 

a·ξ·η·M(XY)+b·η2·M(Y2)+c·η·M(Y) = 0 

a·ξ·M(X)+b·η·M(Y)+c = 0 

(11)

 The system (11) is not intended to be solved in its actual form, which it provides 

assuming the varying of all three parameters only the banal solution (0, 0, 0). 

 The case 4.1 (X+bY) are obtained from (11.2) when c=0 and a=1: 

b = -(ξ/η)·M(XY)/M(Y2) (12)

 The case 4.2 (aX+b) are obtained from (11.1) when c=0 and b=1: 

a = -(η/ξ)·M(XY)/M(X2) (13)

 Two remarks are immediate (from and for 12 and 13): 

• weighting (ξ and η) does not affect the formulas for coefficients - identic est - the obtained 

formulas are transparent to weighting; 

• is possible to construct another formula which it combine (12) and (13). 

 Rewriting of (12) and (13) without weighting and including the equation formulas 

goes to: 

f({X,Y},{b}) = X-Y·M(XY)/M(Y2), f({X,Y},{a}) = X·M(XY)/M(X2)-Y, or 

X(Y) = - Y·M(XY)/M(Y2) && Y(X) = - X·M(XY)/M(X2) 
(14)

 Inversing the X(Y) and Y(X) functions: 

X(Y)-1 = -X·M(Y2)/M(XY) && Y(X)-1 = - Y·M(X2)/M(XY) (15)

 From (14.1 & 15.2) and (14.2 & 15.1) it results that the coefficient can be obtained by 

applying of a mean function: 

X(Y) = - Y·Mean(M(XY)/M(Y2), M(X2)/M(XY)) (16)

Y(X) = - X·Mean(M(Y2)/M(XY), M(XY)/M(X2)) (17)

 But which mean is suitable? - The geometric mean provides same reversed result for: 

X(Y) = - Y·M0.5(X2)/M0.5(Y2) && Y(X) = - X·M0.5(Y2)/M0.5(X2) (18)

 Formula (18) it represents a new formula for coefficients calculation. Which case can 

be assigned to (18)? - Only the remaining one, 4.0: 

a=± M0.5(Y2), b=∓M0.5(X2) (19)

 The cases 8.1 & 8.2 are well known; it will not be discussed here. 

 The case 8.3 are obtained from (11.1) & (11.2) when c = 1: 

a·M(X2)+b·M(XY)+M(X) = a·M(XY)+b·M(Y2)+M(Y) = 0 (20)
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 Equation (20) leads to: 

a = (M(Y2)M(X)-M(Y)M(XY))/(M(X2)M(Y2)-M2(XY)) 

b = (M(X2)M(Y)-M(X)M(XY))/(M(X2)M(Y2)-M2(XY)) 
(21)

 Also from (21) through extension, the following can be assigned to (8.0): 

X·(M(Y2)M(X)-M(Y)M(XY))+ 

+ Y·(M(X2)M(Y)-M(X)M(XY))+ 

+ (M(X2)M(Y2)-M2(XY))=0 

(22)

 

 

  Null intercept regression 

  

 Let us look more closely on case 4 with its sub-cases 4.0, 4.1 and 4.2. 

• What we want? - We want a linear regression between X and Y. 

• What we know? - We know at least that intercept coefficient is null. 

• What we have? - We have at least a equation of type aX + bY = 0. 

• What we cannot have? - We cannot have both parameters unknown. 

 Let us start from 4.0 (aX+bY=0) and apply the average operator. This leads to: 

aM(X)+bM(Y)=0, for aX+bY=0 (23)

 What is wrong in our suppositions? - Remember, we already obtained some formulas 

for a and b (eq. 16-19). Answer: nothing is wrong! - Let us go back to table 3 and look more 

carefully to dependence/independence suppositions - here are the inconsistencies. 

 Now let us review our results for aX+bY=0: 

• aM(X)+bM(Y) = 0 - main result, eq. (23) 

o if X and Y are independent variables, then from eq. 23 solution is immediate: 

a = ± M(Y), b = ∓M(X), for X, Y independent variables (24)

o if X is the dependent variable and Y is the independent variable, then (see also 17): 

a = Mean(M(Y2)/M(XY), M(XY)/M(X2)), b = -1, for Y=Y(X) (25)

o if Y is the dependent variable and X is the independent variable, then (see also 16): 

b = Mean(M(XY)/M(Y2), M(X2)/M(XY)), a = -1, for X=X(Y) (26)

o if X and Y are both dependent variables (see also 19): 

a = ± M0.5(Y2), b=∓M0.5(X2) (27)

 Few remarks can be made: 
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• The equations (25)-(27) assume that at least one of followings is (or a transformation 

applied to the data make it) true: M(X) = 0, M(Y) = 0, Mean(M(Y2)/M(XY), 

M(XY)/M(X2))M(X)-M(Y) = 0, Mean(M(Y2)/M(XY), M(XY)/M(X2))M(Y)-M(X) = 0. 

• The mean function can be a weighted mean such as: 

a = (1-f)·M(Y2)/M(XY) + (f)·M(XY)/M(X2), b = -1 (28)

f portion (fraction) of X dependence in Y and (1-f) vice versa (1 ≥ f > 0.5) 

• or 

b = (1-f)·M(X2)/M(XY) + (f)·M(XY)/M(Y2), a = -1 (29)

  f portion (fraction) of Y dependence in X and (1-f) vice versa (1 ≥ f > 0.5) 

• Near to middle region (f ≈ 0.5) we can use any un-weighted mean. Followings are for 

Y=Y(X): 
2 2 2 2

2 2

M(Y ) M(XY) M(X )M(Y ) M (XY)a AM ,
M(XY) M(X ) 2M(XY)M(X )

⎛ ⎞ +
= =⎜ ⎟

⎝ ⎠
 

2 2

2 2

M(Y ) M(XY) M(Y )a GM ,
M(XY) M(X ) M(X )

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

2 22

22

2

M(Y ) M(XY)
M(XY) M(X )M(Y ) M(XY)a EM ,

M(XY) M(X ) 2

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠= =⎜ ⎟

⎝ ⎠
 

2

2 2

2

M(Y ) M(XY) 1a HM ,
M(XY) M(X ) M(XY) M(X )AM ,

M(Y ) M(XY)

⎛ ⎞
= =⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 

1/ pp p2

22

2

M(Y ) M(XY)
M(XY) M(X )M(Y ) M(XY)a PM , ,p , p 0

M(XY) M(X ) 2

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠⎝ ⎠= = ≠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

2

m m2 m m

m m 1 m 1 m m 1 m 1

2 2

0 02 2

M(Y ) M(XY)a AGM , lim c lim d , where
M(XY) M(X )

c AM(c ,d ), d GM(c ,d ), and

M(Y ) M(XY) M(Y ) M(XY)c AM , , d GM ,
M(XY) M(X ) M(XY) M(X )

→∞ →∞

− − − −

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

(30)
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and note the followings: 

min( , ) HM( , ) GM( , ) AGM( , ) AM( , ) EM( , ) max( , )≤ ≤ ≤ ≤ ≤ ≤i i i i i i i i i i i i i i (31)

min( , ) PM( , , ) max( , )≤ ≤i i i i i i i  (32)

p
min( , ) lim PM( , , p)

→−∞
=i i i i , HM( , ) PM( , , 1)= −i i i i , 

p 0
GM( , ) lim PM( , , p)

→
=i i i i , AM( , ) PM( , ,1)=i i i i , 

EM( , ) PM( , , 2)=i i i i , 
p

max( , ) lim PM( , , p)
→+∞

=i i i i  

(33)

 More, a definition of PPM(·,·) similarly to AGM(·,·) leads to GM(·,·): 
2 2

0 02 2

m m 1 m 1 m m 1 m 1

2 2

m m2 2m

M(Y ) M(XY) M(Y ) M(XY)c PM , ,1 , d PM , , 1 ,
M(XY) M(X ) M(XY) M(X )

c PM(c ,d ,p), d PM(c ,d , p),

M(Y ) M(XY) M(Y ) M(XY)a PPM , lim c ,d GM ,
M(XY) M(X ) M(XY) M(X )

− − − −

→∞

⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = −

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (34)

 

 

  Not null intercept formulas 

  

 The following table contains the obtained formulas (see algebraic approach section): 

 
Table 5. Linear regression coefficients formulas 

Variant Equation Function for f = 0 Coefficients 
8.0 aX+bY+c=0 f({X,Y},{a,b,c}) = aX+bY+c a = M(Y2)M(X)-M(Y)M(XY) 

b = M(X2)M(Y)-M(X)M(XY) 
c = M(X2)M(Y2)-M2(XY) 

8.1 X+nY+p=0 f({X,Y},{b,c}) = X+bY+c b = - (M(XY)-M(X)M(Y)) 
/(M(Y2)-M2(Y)) 
c = - (M(Y2)M(X)-M(Y)M(XY))
/(M(Y2)-M2(Y)) 

8.2 mX+Y+p=0 f({X,Y},{a,c}) = aX+Y+c a = - (M(XY)-M(X)M(Y)) 
/(M(X2)-M2(X)) 
c = - (M(X2)M(Y)-M(X)M(XY))
/(M(X2)-M2(X)) 

8.3 mX+nY+1=0 f({X,Y},{a,b}) = aX+bY+1 a = (M(Y2)M(X)-M(Y)M(XY)) 
/(M(X2)M(Y2)-M2(XY)) 
b = (M(X2)M(Y)-M(X)M(XY)) 
/(M(X2)M(Y2)-M2(XY)) 
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Geometrical approach 

 

 In the following figure is depicted a (X,Y) plot, with a regression equation line 

(assigned with Y=aX+c), and a point Pi - of coordinates (xi,yi). 

 

 
Figure 1. Geometrical interpretation of error estimates 

 
 Following are supplementary depicted: 

• The intersection of X axis parallel with regression equation line - point of generic 

coordinates (xi
est,yi) - from assumption that X=bY+c is the regression equation; 

• The intersection of Y axis parallel with regression equation line - point of generic 

coordinates (xi,yi
est) - from assumption that Y=aX+c is the regression equation; 

• The intersection between perpendicularly from Pi to regression equation line. 

 The followings are true: 

• if S ← ∑ ( )2
i iŷ y−  then a ← 2 2

M(XY) M(X)M(Y)
M(X ) M (X)

−
−

, c ← 
2

2 2

M(X )M(Y) M(X)M(XY)
M(X ) M (X)

−
−

 

• if S ← ∑ ( )2
i ix̂ x−  then b ← 

1

2 2

M(XY) M(X)M(Y)
M(Y ) M (Y)

−
⎛ ⎞−
⎜ ⎟−⎝ ⎠

, c 

←
2M(Y )M(X) M(Y)M(XY)

M(XY) M(X)M(Y)
−

−
−

 

 It’s easy to check that: 

( )
( )

2
i i

2
i i

ˆS x x
ˆS y y

1b
a←Σ −

←Σ −

←  and 
( )

( )

( )

2
i i

2
i i

2
i i

ˆS y y

ˆS x x
ˆS y y

c
c

a
←Σ −

←Σ −
←Σ −

← −  when X ↔ Y (35)

which comes also from: 

Y = aX + c ↔ 1 cX Y
a a

= −  (36)

Y

X

Y=aX+c

(xi,yi)
i iˆ(x , y )

i iˆ(x , y )
D 
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 The equations (35) and (36) prove that the chousing of S = ∑ ( )2
i ix̂ x−  for Y = aX + c 

is equivalent to chousing of S = ∑ ( )2
i iŷ y−  for X = bY + c. So, the use of square (xi

est-xi)2 is 

equivalent to case 8.2, and the use of square (yi
est-yi)2 is equivalent to case 8.1. 

 If S ← PiD2 then: 

S = ∑(axi-yi+c)/(a2+1)  

 After calculation of ∂S/∂a and ∂S/∂c it results: 

( ) ( )
( )

2 2 2 2M(X ) M (X) M(Y ) M (Y)
a

2 M(XY) M(X)M(Y)
− − −

= −
−

 

        
( ) ( )

( )

2 2 2 2M(X ) M (X) M(Y ) M (Y)
1

2 M(XY) M(X)M(Y)
− − −

± +
−

 

and c = M(Y) - aM(X) for S ← ( ) ( )
( ) ( )

2 2
i i i i

2 2
i i i i

ˆ ˆy y x x
ˆ ˆy y x x

− −
Σ

− + −
 

(37)

 A formula that is even more complicated is obtained when offsets from S are choused 

to be with a slope of m. In this case, the formula for S is: 

S ← 
2

2
i i2

m 1 (ax y c)
(a m)

+
Σ − +

−
 (38)

 When m is independent to both a and c it results: 

( ) ( ) ( )
( ) ( )( )

2 2 2 2 2

2 2

m M(X ) M (X) 2m M(XY) M(X)M(Y) M(Y ) M (Y)
a

2 m 3M (X) M(X ) M(XY) M(X)M(Y)

+ − − + − ± ∆
=

− + −
 

( ) ( )( )( )
( ) ( ) ( )( )
( ) ( )

22 2 2 2 2

2 2 2 2 2

2 24 2 2 2 2

2m 4 M(XY) M(X)M(Y) M(Y ) M (Y) 3M(X ) 5M (X)

8m M(XY) M(X)M(Y) m M(X ) M (X) M(Y ) M (Y)

m M(X ) M (X) M(Y ) M (Y) , c M(Y) aM(X)

∆ = − − − −

− − − + −

+ + + − = −

 
(39)

 Note that for the case of dependence between m and a, ∂S/∂m = 0 can be solved in two 

ways: 

• if m is not a function of a then: 
2

2

m 1 10 m
m (a m) a
⎛ ⎞∂ +

= ↔ = −⎜ ⎟∂ −⎝ ⎠
 (perpendicular offsets) (40)

• if m is a function of a then: 
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2
2

2

m 1 0 a m D m 1
m (a(m) m)
⎛ ⎞∂ +

= ↔ = + +⎜ ⎟∂ −⎝ ⎠
, C any constant (41)

 By replacing of (27) in (24) it results: 

S ← 2
i i2

1 (ax y b)
D

Σ − +  (42)

 

 

Is the value of Pearson affected by how the slope and intercept are 

calculated? 

 

 The full question is: assuming that we have a measured X and Y and we want to 

estimate Y by using of regression equation which we obtained, how the calculated slope and 

intercept affects the Pearson r between measured Y and estimated Ŷ? - The answer is No, see 

below. 

 Let us take the squared Pearson coefficient between Y and Ŷ: 

( )
( )( )

2

2
2 2 2 2

ˆ ˆM(YY) M(Y)M(Y)
ˆr (Y,Y)

ˆ ˆM(Y ) M (Y) M(Y ) M (Y)

−
=

− −
 (43)

 By substituting of Ŷ = aX+c in (43) it results: 

( )
( )( )
( )

( )( )
( )

( )( )

2
2

2 2 2 2

2

2 2 2 2 2 2

2

2 2 2 2 2 2

M((aX b)Y) M(aX c)M(Y)ˆr (Y,Y)
M(aX c) M (aX c) M(Y ) M (Y)

M(aXY cY) M(aX c)M(Y)
M(a X 2acX c ) M (aX c) M(Y ) M (Y)

aM(XY) cM(Y) (aM(X) c)M(Y)
(a M(X ) 2acM(X) c ) (aM(X) c) M(Y ) M (Y)

aM(XY) a

+ − +
= =

+ − + −

+ − +
= =

+ + − + −

+ − +
= =

+ + − + −

−
=

( )
( )( )

( )
( )( )

2

2 2 2 2 2 2

2

2 2 2 2

M(X)M(Y)
a M(X ) a M (X) M(Y ) M (Y)

M(XY) M(X)M(Y)
M(X ) M (X) M(Y ) M (Y)

=
− −

−
=

− −

 (44)

 Relation (30) prove that the values of a and c does not affect the correlation between 

measured Y and estimated Y, Ŷ. 
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  About standard errors for regression parameters calculation 

 

 Standard error of the estimate (SEE) is used in association with t-test to see if a 

significant linear correlation exists. The SEE is related to r2 through: 
21 rSEE

n k
−

=
−

, k = the number of parameters in regression model  (45)

 As we seen (Eq. 44), r2 does not depend on parameters values, so, also SEE does not 

depend on parameters values. 

 For two parameters type linear regression, standard errors for parameters are: 

SE(a) = 2 2

SEE 1
M(X ) M (X)N −

, SE(c) = 2SE(a) M(X ) , for Y=aX+c (46)

 For one type linear regression, standard errors for parameters are: 

SE(a) = 2

SEE 1
M(X )N

, for Y=aX (47)

 

 

  Gauss-Markov theorem implications for linear regression 

 

 The Gauss-Markov theorem states that parameters that are obtained from minimizing 

the sum of the squared errors are Best Linear Unbiased Estimate (called BLUE). Of course, 

this conclusion comes in some assumptions. If the errors are independent and identically normally 

distributed, it is the maximum likelihood estimator. Loosely put, the maximum likelihood estimate is 

the value of parameters that maximizes the probability of the data that was observed. 

 The Gauss-Markov theorem shows that the least squares estimate is a good choice, but if the 

errors are correlated or have unequal variance, there will be better estimators. Even if the errors 

behave but are non- normal then non-linear or biased estimates may work better in some sense. So this 

theorem does not tell one to use least squares all the time, it just strongly suggests it unless there is 

some strong reason to do otherwise. Situations where estimators other than ordinary least squares 

should be considered are: 

• When the errors are correlated or have unequal variance, generalized least squares should be used. 

• When the error distribution is long-tailed, then robust estimates might be used. Robust estimates 

are typically not linear in y. 
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• When the predictors are highly correlated (collinear), then biased estimators such as ridge 

regression might be preferable. 

 We have described linear models. Parameters (a, b, and c) may be estimated using 

least squares. If we further assume that errors of estimation are normally distributed then we 

can test any linear hypothesis about parameters, construct confidence regions for parameters 

(from standard errors), make predictions with confidence intervals. 

 What can go wrong? - many things, unfortunately; we try to categorize them below: 

• Source and quality of the data - how the data was collected directly effects what 

conclusions we can draw. We may have a biased sample, such as a sample of 

convenience, from the population of interest. This makes it very difficult to extrapolate 

from what we see in the sample to general statements about the population. Important 

predictors may not have been observed. This means that our predictions may be poor or 

we may misinterpret the relationship between the predictors and the response. 

Observational data make causal conclusions problematic - lack of orthogonality makes 

disentangling effects difficult; missing predictors add to this problem. The range and 

qualitative nature of the data may limit effective predictions. It is unsafe to extrapolate too 

much. Carcinogen trials may apply large doses to mice. What do the results say about 

small doses applied to humans? Much of the evidence for harm from substances such as 

asbestos and radon comes from people exposed to much larger amounts than that 

encountered in a normal life. It’s clear that workers in older asbestos manufacturing plants 

and uranium miners suffered from their respective exposures to these substances, but what 

does that say about the danger to you or me? 

• We hope that errors are normally distributed; but errors may be heterogeneous (unequal 

variance), may be correlated, and/or may not be normally distributed. The last defect is 

less serious than the first two because even if the errors are not normal, the parameters 

will tend to normality due to the power of the central limit theorem [A]. With larger 

datasets, normality of the data is not much of a problem. 
                                                 
[A] from Wikipedia [http://en.wikipedia.org/wiki/Central_limit_theorem] - A central limit 
theorem is any of a set of weak-convergence results in probability theory. They all express the 
fact that any sum of many independent identically-distributed random variables will tend to be 
distributed according to a particular attractor distribution. The most important and famous 
result is called The Central Limit Theorem which states that if the sum of the variables has a 
finite variance, then it will be approximately normally distributed. 
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• The structural part of y = aX+c model may be incorrect. The model we use may come 

from different sources: 

o Physical theory may suggest a model; for example, Hooke’s law says that the 

extension of a spring is proportional to the weight attached. Models like these 

usually arise in the physical sciences and engineering. 

o Experience with past data; similar data used in the past was modeled in a 

particular way. It’s natural to see if the same model will work the current data. 

Models like these usually arise in the social sciences. 

o No prior idea - the model comes from an exploration of the data itself. 

 Confidence in the conclusions from a model declines as we progress through these. 

Models that derive directly from physical theory are relatively uncommon so that usually the 

linear model can only be regarded as an approximation to a reality, which is very complex. 

Most statistical theory rests on the assumption that the model is correct. In practice, the best 

one can hope for is that the model is a fair representation of reality. A model can be no more 

than a good portrait [2]. 

 

 

  Rescaling of X and Y and Ridge regression 

 

 When we want to rescale the X and Y values? - When we want to make comparisons 

between predictors; predictors of similar magnitude are easier to compare; a change of units 

might aid interpretability; numerical stability is enhanced when all the predictors are on a 

similar scale. 

 Rescaling X and Y leaves the t, F tests and r2 unchanged, and obtained new parameters 

are linear in rescaling. We already prove this for r2. 

 Ridge regression makes the assumption that the regression coefficients (after 

normalization) are not likely to be very large. 

 Let us go back to our model (2) rewritten in term of estimator and to be estimate. Then 

our estimator Ê and our to be estimated E are: 

Ê(X,Y) = aX + bY + c, E(X,Y) = 0, Ê estimator of E (48)

 The sum function S from (3) became: 

S = ∑(E(X,Y)-Ê(X,Y))2 = ∑(axi+byi+c)2 (49)
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 The sum S can be averaged, when are called means-quared-error, MSE: 

MSE = M((E(X,Y)-Ê(X,Y))2) (50)

 Let us assign another value to MSE: 

MSE = (E(X,Y)-M(Ê(X,Y)))2 + M((Ê(X,Y)-M(Ê(X,Y)))2) (51)

 The formulas (50) and (51) are equivalent only if E(X,Y) is assumed to be constant 

(independent of X and Y). 

 In formula (51) two interesting terms appears [3]: 

bias = (E(X,Y)-M(Ê(X,Y)))2, variance = M((Ê(X,Y)-M(Ê(X,Y)))2) (52)

 Note that occurs (53) and then model is unbiased. 

if E(X,Y) = M(Ê(X,Y)) for all (X,Y) pairs ⇔ bias = 0 (53)

 So, in the classifying of (53) our linear models can be splitted into biased (such as 

(28), (29), (30), (8.0), and (8.3)) and unbiased (such as (24), (8.1), (8.2), (37), and (38-39)). 

 Let us rewrite (52) using (49): 

bias = (aM(X)+bM(Y)+c)2, variance = M((a(X-M(X))+b(Y-M(Y)))2) (54)

 So, the bias occurs when (M(X),M(Y)) ∉ aX+bY+c = 0. However, an unbiased model 

may still have a large mean-squared-error if Ê(X,Y) it has a large variance. This will be the 

case if Ê(X,Y) is highly sensitive to the peculiarities (such as noise and the choice of sample 

points) of each particular training set and it is this sensitivity which causes regression 

problems to be ill-posed in the Tikhonov [4] sense. Often, however, the variance can be 

significantly reduced by deliberately introducing a small amount of bias so that the net effect 

is a reduction in mean-squared-error. This is the job of Ridge regression [5], a method for 

solving badly conditioned linear regression problems. 

 Bad conditioning means numerical difficulties in performing the matrix inverse 

necessary to obtain the variance matrix. It is also a symptom of an ill-posed regression 

problem in Tikhonov's sense and Hoerl & Kennard's method was in fact a crude form of 

regularization, known now as zero-order regularization [6]. 

 Introducing bias is equivalent to restricting the range of functions for which a model 

can account. Typically, this is achieved by removing degrees of freedom. Examples would be 

lowering the order of a polynomial or reducing the number of weights in a neural network. 

Ridge regression does not explicitly remove degrees of freedom but instead reduces the 

effective number of parameters. The resulting loss of flexibility makes the model less 
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sensitive. A convenient, if somewhat arbitrary, method of restricting the flexibility of linear 

models is to augment the sum-squared-error with a term, which penalizes large weights, 

MSER = M((E(X,Y)-Ê(X,Y))2) + ρ2(a2(M(X2)-M2(X))+b2(M(Y2)-M2(Y))) (55)

 This is ridge regression (weight decay) and the regularization parameter ρ2 controls 

the balance between fitting the data and avoiding the penalty. A small value for means the 

data can be fit tightly without causing a large penalty; a large value for means a tight fit has to 

be sacrificed if it requires large weights. The bias introduced favors solutions involving small 

weights and the effect are to smooth the output function since large weights are usually 

required to produce a highly variable (rough) output function. 

 The use of ridge regression can be motivated in two ways. Suppose we take a 

Bayesian point of view and put a prior (multivariate normal) distribution on b that expresses 

the belief that smaller values of a and b are more likely than larger ones. Large values of ρ2 

correspond to a belief that the b are really quite small whereas smaller values of ρ2 correspond 

to a more relaxed belief about a and b. Another way of looking at is to suppose we place to 

some upper bound on (a2+b2+c2) and then compute the least squares estimate to this 

restriction. Use of Lagrange multipliers leads to ridge regression. The choice of ρ2 

corresponds to the choice of upper bound in this formulation. ρ2 may be chosen by automatic 

methods but it is probably safest to plot the values of parameters as a function of ρ2. You 

should pick the smallest value of ρ2 that produces stable estimates of parameters. 

 

 

  Discussion 

 

 The use of PM(·,·,·), eq. (30) - Hölder’s mean - it opens an interesting discussion. We 

already had seen that: 

• if S ← (Y-(aX+c))2 then: 

o if c = 0 then: 

 a = 2

M(XY)
M(X )

 (or a = M(Y)
M(X)

 from M(Y) = aM(X)) 

o else: 

 a = 2 2

M(XY) M(X)M(Y)
M(X ) M (X)

−
−

, c = 
2

2 2

M(X )M(Y) M(X)M(XY)
M(X ) M (X)

−
−
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• if S ← (X-(Y-c)/a)2 then: 

o if c = 0 then: 

 a = 
2M(Y )

M(XY)
 (or a = M(Y)

M(X)
 from M(Y) = aM(X)) 

o else: 

 a = 
2 2M(Y ) M (Y)

M(XY) M(X)M(Y)
−

−
, c = 

2M(Y)M(XY) M(X)M(Y )
M(XY) M(X)M(Y)

−
−

 

 If we put back our formulas to the geometrical interpretation, following result is 

obtained (Figure 2): 

 
Figure 2. Penality function S vs. vertical and horizontal offsets 

 
 In addition, we had seen that (eq. 33): 

• 
p

min( , ) lim PM( , , p)
→−∞

=i i i i  

• 
p

max( , ) lim PM( , , p)
→+∞

=i i i i  

 So, if we put our formulas for, let us see, slope obtained from this two different 

aproaches in previous formulas, it result that: 

2 2 2 2S (Y aX c) S (X (Y c) / a ) S (Y aX c) S (X (Y c) / a )p
min(a ,a ) lim PM(a ,a , p)

← − − ← − − ← − − ← − −→−∞
=  

2 2 2 2S (Y aX c) S (X (Y c) / a ) S (Y aX c) S (X (Y c) / a )p
max(a ,a ) lim PM(a ,a , p)

← − − ← − − ← − − ← − −→+∞
=  

(56)

 In fact, through equation (56) we construct a function (PM) which sweeps the entire 

right angle (figure 3). 

Y 

(xi,axi+c) 

(yi-c)/a,yi) 

X

Y = aX+c

(xi,yi)

S ← (X-(Y-c)/a)2

S ← (Y-aX-c)2

horizontal offsets

vertical offsets 
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Figure 3. Hölder mean, acting for linear regression 

 
 As consequence, all obtained formulas for slope (and for intercept, when is not set 

null) can be obtained from a Hölder mean: 

( )2 2

*

S (Y ax c) (X (Y c) / a )
S p such that : a PM a , a ,p

− − − −
∀ ∃ ∈ =st\  (57)

where the obtained formula (57) was completed with negative slope cases. Of course, when 

slope is negative, then are choused the negative solution of (57). 

 Finally, note that equation (57) has a solution in 
*st\  and this is unique if and only if 

|aS| are in between: 

2 2

2 2

1/ pp p*

S (Y ax c) (X (Y c) / a )

S(Y ax c) (X (Y c) / a )

!p : 2 a a a

a a a

− − − −

− − − −

⎛ ⎞∃ ∈ = +⎜ ⎟
⎝ ⎠

⇔

≤ ≤

st\

 (60)

and as we already seen (eq. 33), for 2 2
2

S (Y ax c) (X (Y c) / a )
a a a

− − − −
=  admits also p → 0 as limit 

solution. 

 An interesting formula results also as consequence of (8.1), (8.2), (30), (33) and 

construction from Figure 2: calculation of slope using GM and intercept using 

M(Y)=aM(X)+c, where sign of a and c respectively, are given from quadrant of scatter plot: 

2 2

2 2

M(Y ) M (Y)a
M(X ) M (X)

−
= ±

−
, 

2 2

2 2

M(Y ) M (Y)c M(Y) M(X)
M(X ) M (X)

−
=

−
∓  (61)

horizontal offsets

vertical offsets 

Y = aX+c 

(xi,yi)

2 2S (Y aX c) S (X (Y c) / a )
PM(a ,a , p)

← − − ← − −
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