

Characteristic and Counting Polynomials on Modeling Nonane Isomers Properties

LORENTZ JÄNTSCHI¹, SORANA-DANIELA BOLBOACĂ², CRISTINA MARIA FURDUI³

¹ "Iuliu Haţieganu" University of Medicine and Pharmacy 13 Emil Isac Street, 400023 Cluj-Napoca, Romania http://sorana.cademicdirect.ro sorana@j.academicdirect.ro

² Technical University of Cluj-Napoca, 15 Constantin Daicoviciu Street, 400020 Cluj-Napoca, Romania http://lori.academicdirect.org lori@j.academicdirect.org

³ Wake Forest University Health Sciences, Medical Center Bvd, Winston-Salem, 27157 NC, USA http://www1.wfubmc.edu/MolMed_Section/Faculty/CristinaFurdui.htm cfurdui@wfubmc.edu

Key Words and Phrases: Characteristic polynomial, Counting polynomials, Nonane isomers, Henry's law constant

AMS Subject Classification: 05C10 (Topological graph theory, embedding), 05C85 (Graph algorithms), 05C90 (Applications), 11T06 (Polynomials)

The major goal of this study was to investigate the broad application of graph polynomials to the analysis of Henry's law constants of nonane isomers.

In this context, Henry's law constants of nonane isomers were modeled using characteristic and counting polynomials and the characteristic and counting polynomials on the distance matrix, on the maximal fragments matrix, on the complement of maximal fragments matrix, and on the Szeged matrix were calculated for each compound.

One of included nonane isomers, 4-methyloctane, was identified as an outlier and was withdrawn from further analysis. This report describes the performance and characteristics of top five significant models. The results show that Henry's law constants of nonane isomers can be modeled by applying characteristic and counting polynomials.

Characteristic and Counting Polynomials on Modeling Nonane Isomers Properties

Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ & Cristina M. FURDUI

"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Romania

Technical University of Cluj-Napoca, Romania

Wake Forest University Health Sciences, Winston-Salem, USA

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Background

 Characteristic polynomial = one associates a polynomial to any square matrix [Trinajstić, 1983].

$$\varphi(G,X) = \det[XI - A(G)]$$

where A(G) is the adjacency matrix of a pertinently constructed skeleton graph and I is the identity matrix

Encodes several properties of a matrix, the most important being the matrix eigenvalues, its determinant and its trace [Trinajstić, 1988].

Application of characteristic polynomials

Mathematics:

- Correlations of Characteristic Polynomials: Riemann-Hilbert Approach [Strahov and Fyodorov, 2003]
- Spectral problems for polynomial matrices [Kublanovskaya, 2005]

Computer science:

- Algorithms for computing the characteristic polynomial in a domain [Abdeljaoued and Malaschonok, 2001]
- Stability of discrete-time systems [Lastman and Sinha, 1999]
- Complexity of computing determinants [Kaltofen and Villard, 2005]

Application of characteristic polynomials

Engineering:

 Characteristic polynomial assignment in F-M model II of 2-D systems [Tang and Kang, 2005]

Chemistry:

- Characteristic polynomial and topology of molecule [Balaban and Harary, 1971]
- Cluj weighted adjacency matrices [Kunz, 1998]
- Properties and relationships of conjugated polyenes having a reciprocal eigenvalue spectrum - Dendralene and radialene hydrocarbons [Dias, 2004]

Application of characteristic polynomials

Physics:

- Characteristic polynomials of random matrices at edge singularities [Brézin and Hikami, 2000]
- D-decomposition theory [Gryazinam 2004]

Management:

 Condition of applying the fourth order of characteristic equation to the dynamic stability of wing-in-ground effect vehicles [Zhang et al., 2000]

Counting polynomials & chemical graph theory

Counting polynomial:

$$\sum_{k\geq 0} a_k X^k, \text{ where } a_k = |\{M_{i,j} \mid M_{i,j} = k\}|$$

 a_k being the polynomial-count and i, j = 1, ..., n

- Methods for counting polynomials [Diudea et al., 2002]:
 - Distance matrix
 - Szeged matrix
 - Cluj matrix

Research Aim

- To analyze the Henry's law constants of nonane isomers
 - by using characteristic and counting polynomials
- Can characteristic and counting polynomials be used to characterize the relationship between structure and chemical properties for this class of compounds?

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Alkanes isomers

Acyclic saturated hydrocarbon structures that normally have a linear configuration:

$$C_nH_{2n+2}$$

- The number of isomers increases with the number of carbon atoms:
 - 1 to 10 carbons
 - Isomers: 1, 1, 1, 2, 3, 5, 9, 18, 35, and 75
- Nonane isomers with the general chemical structure C₉H₂₀

Henry's law constant

The values of Henry's law constants were taken from a previously reported research [Yaws and Yang, 1992]

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Counting and Characteristic Polynomial

- Counting polynomials [Jantschi and Bolboaca, unpublished]:
 - the distance matrix (CDi)
 - the maximal fragments matrix (CMx)
 - the complement of the maximal fragments matrix (CcM)
 - Szeged matrix (CSz)

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Characteristic and counting polynomials - generic formulas

Characteristic polynomial:

$$P(X)_{ChP} = X^7 \cdot (X^2 - 8) + X \cdot Q(X)_{ChP}$$

Counting polynomial on the distance matrix:

$$P(X)_{CDi} = 2 \cdot X^2 \cdot Q(X)_{CDi} + 16 \cdot X + 9$$

Characteristic and counting polynomials - generic formulas

Counting polynomial on the maximal fragments matrix:

$$P(X)_{CMx} = 16 \cdot X^8 + X \cdot Q(X)_{CMx} + 2 \cdot X + 9$$

Counting polynomial on the complement of the maximal fragments matrix:

$$P(X)_{CcM} = 2 \cdot X^8 + X \cdot Q(X)_{CcM} + 16 \cdot X + 9$$

Characteristic and counting polynomials - generic formulas

Counting polynomial on the Szeged matrix:

$$P(X)_{CSz} = 2 \cdot X^8 + X \cdot Q(X)_{CSz} + 4 \cdot X + 9$$

- Remark:
- The characteristic polynomial can be easily factorized while the counting polynomials are not.

Similarities in counting polynomials

- All formulas contain the "a₁-X+9", where a₁ varies from 2 to 16, but is always an even number;
- The generic formula for counting polynomials on the maximal fragments matrix, on the complement of maximal fragments matrix, and on Szeged matrix, respectively is:

$$P(X) = a_0 X^8 + XQ(X) + a_1 X + 9$$

- where a_0 and a_1 are even integers with values from 2 to 16;
- The term Q(X) could be factorized in a limited number of cases

Characteristic polynomial - monovariate model

 $\hat{\mathbf{Y}}_{ChP-mono} = 19.54 + 0.17 \cdot P(1.65...)$

- $r^2 = 0.2968 35$ compounds
- $r^2 = 0.2968 34$ compounds (4-methyloctane)
 - compound 4-methyloctane was considered an outliner and was excluded from further analysis.

8/19/2007 20

Multivariate models

Characteristic polynomial

$$\hat{Y}_{ChP} = 1765.89 + 0.18 \cdot P(24/9) - 0.11 \cdot P(26/9) - 3.44 \cdot 10^{-5} \cdot P(65/9)$$

Counting polynomial on the distance matrix:

$$\hat{Y}_{CDi} = 106.16 + 4.89 \cdot P(-3/9) - 6.54 \cdot P(3/9) - 5.55 \cdot 10^{-8} \cdot P(79/9)$$

Counting polynomial on the maximal fragments matrix:

 $\hat{Y}_{CMx} = 29.65 - 5.90 \cdot 10^{-6} \cdot P(-79/9) + 1.15 \cdot 10^{-5} \cdot P(-73/9) - 1.19 \cdot 10^{-3} \cdot P(-27/9)$

Multivariate models

Counting polynomial on the complement of the maximal fragments matrix:

```
\hat{Y}_{CcM} = -1275.16 + 3.37 \cdot P(13/9) + 3.72 \cdot 10^{-5} \cdot P(74/9) - 2.52 \cdot 10^{-5} \cdot P(77/9)
```

Counting polynomial on the Szeged matrix

```
\hat{Y}_{CSz} = 25.05 - 1.98 \cdot 10^{-5} \cdot P(67/9) + 2.62 \cdot 10^{-5} \cdot P(73/9) - 1.07 \cdot 10^{-5} \cdot P(77/9)
```

Multivariate models assessment

Model	Parameter					
	r	95%CI _r	r ²	StdError	Щ	n
Ŷ _{ChP}	0.9338	[0.8704-0.9666]	0.8720	0.6468	68 [†]	34
Ŷ _{CDi}	0.9246	[0.8530-0.9619]	0.8548	0.6888	59 †	34
Ŷ _{CMx}	0.8520	[0.7217-0.9239]	0.7259	0.9464	68 [†]	34
Ŷ _{CcM}	0.8269	[0.6783-0.9104]	0.6838	1.0164	22 †	34
Ŷ _{CSz}	0.8363	[0.6944-0.9155]	0.6993	0.9912	23†	34

r = correlation coefficient; $95\%Cl_r = 95\%$ confidence intervals for correlation coefficient; r^2 = squared correlation coefficient; StdError = standard error; F = Fisher parameter; n = sample size; p < 0.0001

8/19/2007 23

Results of correlated correlation analysis

	Ŷ _{ChP}	Ŷ _{CDi}	Ŷ _{CMx}	Ŷ _{CSz}
Ŷ _{ChP}	1			
Ŷ _{CDi}	0.3012	1		
Ŷ _{CMx}	0.0036	0.0144	1	
Ŷ _{CcM}	0.0015	0.0083	0.2442	1
Ŷ _{CSz}	0.0056	0.0185	0.3816	0.5684

8/19/2007 24

Outlines

- Introduction
- Material
- Method
- Results
- Conclusions

Conclusion

The Henry's law constant of the nonane isomers can be modeled using characteristic and counting polynomials.

The characteristic and counting polynomials approaches provided good models, opening a new venue for the characterization of chemical compounds.

Further research

- Characterization of other properties and/or other chemical compounds
- Testing the robustness of the identified models

• ()

8/19/2007 27

Acknowledgement

The research was partly supported by UEFISCSU Romania through project ET108/2006.

Thank you for your attention!

References

- Trinajstić, N.: Chemical Graph Theory. 2nd edn. revised. CRC Press, Boca Raton (1983)
- Trinajstić, N.: The Characteristic Polynomial of a Chemical Graph. J. Math. Chem. 2 (1988) 197–215
- Strahov, E., Fyodorov, Y.V.: Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach. Commun. Math. Phys. 241 (2003) 343–382.
- Kublanovskaya, V.N.: Solution of spectral problems for polynomial matrices. J. Math. Sci. 127 (2005) 2024–2032.
- Abdeljaoued, J., Malaschonok, G.I.: Efficient algorithms for computing the characteristic polynomial in a domain. J. Pure Appl. Algebra 156 (2001) 127–145.
- Lastman, G.J., Sinha, N.K.: Robust stability of discrete-time systems. Int. J. Syst. Sci. 30 (1999) 451–453.
- Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput. Complexity 13 (2005) 91–130.

References

- Tang, W., Kang, J.: Characteristic polynomial assignment in F-M model II of 2-D systems. Journal of Systems Engineering and Electronics 15 (2004) 533–536.
- Balaban A.T., Harary, F.: The Characteristic Polynomial does not Uniquely Determine the Topology of a Molecule. J. Chem. Docum. 11 (1971) 258–259.
- Kunz M.: A note on Cluj weighted adjacency matrices. J. Serb. Chem. Soc. 63 (1998) 647–652.
- Dias, J.R.: Properties and relationships of conjugated polyenes having a reciprocal eigenvalue spectrum - Dendralene and radialene hydrocarbons. Croat. Chem. Acta 77 (2004) 325–330.
- Brézin, E., Hikami, S.: Characteristic polynomials of random matrices at edge singularities. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 62 (2000) 3558–3567.
- Gryazina, E.N.: The D-decomposition theory. Automation and Remote Control 65 (2004) 1872–1884.

8/19/2007 30

References

- Zhang, H., Huang, G., Zhou, W.: Condition of applying the fourth order of characteristic equation to the dynamic stability of wing-in-ground effect vehicles. J. Shanghai Jiaotong Univ. 34 (2000) 80– 82.
- Diudea, M.V., Gutman, I., Jäntschi, L.: Molecular Topology. 2nd edn. Nova Science, Huntington, New York (2002) 53–100.
- Yaws, C.L., Yang, H.-C.: Henry's law constant for compound in water. In: Yaws, C.L. (ed.): Thermodynamic and Physical Property Data. Gulf Publishing Company, Houston, TX (1992) 181–206.
- Jäntschi, L., Bolboacă, S. D.: Counting Polynomials on Regular Structures. Unpublished

No.	k _н (·10 ⁵) [M/atm]	Q(X) _{ChP}
a_01		$(2X-1)(2X+1)(5X^2-3)$
a_02	1.5	$17X^4-12X^2+2$
a_03	1.5	18X ⁴ -16X ² +5
a_04		$3X^2(5X^2-2)$
a_05	1.6	$8X^{2}(2X^{2}-1)$
a_06		21X ⁴ -20X ² +5 X ² (17X ² -10)
a 07	1.7	$X^2(17X^2-10)$
a_08 a_09	1.7	17X ⁴ -11X ² +2
a_09	1.7	18X ⁴ -14X ² +3
a_10	1.7	$2X^{2}(8X^{2}-3)$
a_11	1.8	19X ⁴ -15X ² +3
a_12	1.8	$2(3X^2-1)^2$
a_13		19X ⁴ -16X ² +4
a_14	1.8	$X^2(17X^2-10)$
a_15	1.8	$6X^{2}(3X^{2}-2)$
a_16	1.9	19X⁴-14X²+2
a_17	1.9	$2(3X^2-1)^2$
a_18	1.9	$6X^{2}(3X^{2}-2)$
a_19	1.9	20X ⁴ -18X ² +5
a_20	1.9	2(2X ² -1)(5X ² -2)
a_21	1.9	$X^{2}(17X^{2}-9)$
a_22	1.9	$X^{2}(17X^{2}-6)$
	1.9	$X^{2}(17X^{2}-8)$
a_24	1.9	19X ⁴ -15X ² +2
a_25	1.9	15X ⁴
a_26	2.0	20X ⁴ -17X ² +4
a_27	2.0	19X ⁴ -13X ² +2
a_28		19X ⁴ -14X ² +3
a_29	2.0	$2X^{2}(9X^{2}-5)$
a_30	2.1	$2(10X^4-8X^2+1)$
a_31	2.1	$2X^{2}(9X^{2}-5)$
a_32		$X^{2}(19X^{2}-13)$
a_33	2.1	$X^{2}(19X^{2}-12)$
a_34		$X^{1}(17X^{2}-7)$
a_35	2.1	19X ⁴ -14X ² +2

No.	k _H (·10 ⁵) [M/atm]	Q(X) _{CDi}
a 01		$X^5+2X^4+4X^3+6X^2+7X+8$
a_02	1.5	5X ² +12X+11
a_03	1.5	2(3X ² +6X+5)
a_04	1.6	3X ² +12X+13)
a_05	1.6	4(X ² +3X+3) X ⁶ +2X ⁵ +3X ⁴ +4X ³ +5X ² +6X+7
a_06		$X^{6}+2X^{5}+3X^{4}+4X^{3}+5X^{2}+6X+7$
a_07		2X ³ +5X ² +10X+11
	1.7	X ³ +5X ² +11X+11
a_09	1.7	$2(X^3+3X^2+5X+5)$
	1.7	2(3X ² +5X+6)
	1.8	$(X^2+3)(X^2+3X+3)$
	1.8	$2(X^3+3X^2+5X+5)$
	1.8	2X ³ +7X ² +10X+9
	1.8	7X ² +10+11
	1.8	2(4X ² +5X+5)
a_16	1.9	2X ⁴ +4X ³ +5X ² +8X+9
	1.9	$X^4+4X^3+5X^2+8X+10$
a_18		$X^4+2X^3+7X^2+8X+10$
a_19		$2(X^4+2X^3+3X^2+4X+4)$
a_20		X ⁴ +4X ³ +7X ² +8X+8
a_21		3X ³ +5X ² +9X+11
a_22		6X ³ +5X ² +6X+11
a_23		2X ³ +7X ² +8X+11
a_24		$3X^3 + 7X^2 + 9X + 9$
a_25		9X ² +6X+13
a_26		$X^5 + 3X^4 + 4X^3 + 5X^2 + 7X + 8$
a_27		2X ⁴ +5X ³ +5X ² +7X+9
a_28		$X^4+4X^3+6X^2+8X+9$
a_29		2(2X ³ +3X ² +4X+5)
a_30		$2X^5 + 3X^4 + 4X^3 + 5X^2 + 6X + 8$
a_31		$3X^4 + 4X^3 + 5X^2 + 6X + 10$
a_32		$2X^4 + 3X^3 + 7X^2 + 7X + 9$
a_33		$4X^4 + 4X^3 + 5X^2 + 6X + 9$
	2.1	3X ³ +7X ² +7X+11
a_35	2.1	4X ³ +7X ² +8X+9

	5.	
No.	k _H (·10⁵) [M/atm]	$O(X)_{cc}$
110.	[M/atm]	7.052
a_01		$X^7 + 6X^6 + 13X^5 + 9X^4 + 9X^3 + 16X^2 + 9X + 3$
a_02		$3X^7 + 10X^6 + 9X^5 + 14X^2 + 20X + 10$
a_03		2(X'+10X ⁶ +20X+2)
a_04	1.6	4X ['] +5X ⁶ +13X ⁴ +16X ³ +10X+18
a_05	1.6	$2(2X^7 + 9X^5 + 14X^2 + 8)$
a_06		$2X(X^2+X+1)(3X^3+2X^2+2X+4)$
a_07	1.7	$3X^7 + 3X^6 + 19X^5 + 23X^2 + 6X + 12$
a_08	1.7	$(X+1)(3X^6+6X^5-6X^4+19X^3-6X^2+6X+11)$
a_09	1.7	2X ⁷ +13X ⁶ +10X ⁵ +11X ² +24X+6
a_10	1.7	$4X^{7} + 7X^{5} + 10X^{4} + 15X^{3} + 13X^{2} + 17$
a_11	1.8	$(X+1)(2X^6+5X^5+3X^4+7X^3+4X^2+6X+6)$
a_12	1.8	$3X' + 4X^{6} + 7X^{5} + 11X^{4} + 13X^{3} + 11X^{2} + 7X + 10$
a_13	1.8	2X ⁷ +12X ⁶ +11X ⁴ +13X ³ +23X+5
a_14	1.8	$3X^7 + 8X^6 + 10X^4 + 15X^3 + 18X + 12$
a_15	1.8	3X ⁷ +4X ⁶ +14X ⁵ +26X ² +9X+10
a_16	1.9	$2X^7 + 3X^6 + 13X^5 + 10X^4 + 9X^3 + 18X^2 + 4X + 7$
a_17	1.9	$2X^{7}+8X^{6}+7X^{5}+10X^{4}+9X^{3}+10X^{2}+12X+8$
a_18	1.9	$2(X^7+3X^6+9X^5+10X^2+6X+4)$
a_19	1.9	$X^7 + 11X^6 + 6X^5 + 10X^4 + 9X^3 + 9X^2 + 18X + 2$
a_20	1.9	X'+10X ⁶ +16X ⁵ +20X ² +17X+2
a 21	1.9	$3X^7 + 3X^6 + 9X^5 + 10X^4 + 12X^3 + 11X^2 + 5X + 13$
a 22	1.9	$3X^7 + 5X^5 + 18X^4 + 20X^3 + 6X^2 + 14$
a 23	1.9	$3X^7 + 5X^6 + 5X^5 + 13X^4 + 10X^3 + 10X^2 + 8X + 12$
a 24	1.9	2X ⁷ +7X ⁶ +16X ⁵ +22X ² +13X+6
a 25	1.9	$2(2X^7+7X^4+14X^3+10)$
a_26	2.0	$(\dot{X}+1)(X^6+6X^5-X^4+17X^3+7X+3)$
a_27		$(X+1)(2X^6+2X^5+3X^4+13X^3+7X^2-X+7)$
a_28		2(X'+4X ⁶ +8X ⁴ +11X ³ +6X+3)
a 29	2.0	$3\dot{X}^7 + 12\dot{X}^5 + 12\dot{X}^4 + 11\dot{X}^3 + 17\dot{X}^2 + 11$
a 30	2.1	$X^{7}+3X^{6}+10X^{5}+15X^{4}+17X^{3}+12X^{2}+4X+4$
a 31	2.1	$2X^{7}+3X^{6}+5X^{5}+17X^{4}+17X^{3}+8X^{2}+4X+10$
a 32	2.1	$2X^{7}+3X^{6}+12X^{5}+10X^{4}+10X^{3}+17X^{2}+5X+7$
a 30 a 31 a 32 a 33	2.1	$2(X^{7}+5X^{5}+7X^{4}+10X^{3}+6X^{2}+4)$
a 34	2.1	$(X+1)(3X^{6}+X^{5}-X^{4}+17X^{3}+7X^{2}-7X+13)$
a 35	2.1	$2X^7 + 8X^6 + 5X^5 + 12X^4 + 11X^3 + 8X^2 + 14X + 6$
	ı	<u> </u>

No. K _H (·10 ⁵) Q(X) _{CMX} a 01 1.0 8X'+14X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +4X+1 a 02 1.5 24X'+14X ⁶ +6X ⁵ +3X ² +4X+3 a 03 1.5 2(8X'+14X ⁶ +4X+1) a 04 1.6 32X'+7X ⁶ +5X ⁴ +4X ³ +2X+4 a 05 1.6 2(16X'+6X ⁵ +3X ² +2) a 06 1.7 2X(7X ⁵ +6X ⁴ +5X ³ +4X ² +3X+2) a 07 1.7 24X'+7X ⁶ +12X ⁵ +6X ² +2X+3 a 08 1.7 24X'+14X ⁶ +5X ⁴ +4X ³ +4X+3 a 09 1.7 16X'+21X ⁶ +6X ⁵ +3X ² +6X+2 a 10 1.7 32X'+6X ⁵ +5X ⁴ +4X ³ +3X ² +4 a 11 1.8 16X'+14X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +4X+2 a 12 1.8 24X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 13 1.8 16X'+21X ⁶ +5X ⁴ +4X ³ +3X ² +2X+3 a 15 1.8 24X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+2 a 17 1.9 16X'+14X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +4X+2 a 18 1.9 2(8X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +4X+2 a 19 1.9 8X'+21X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +6X+1 a 20 1.9 8X'+21X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 22 1.9 24X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 22 1.9 24X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 22 1.9 24X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 24 1.9 2(8X'+7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 25 1.9 2(16X'+5X ⁴ +4X ³ +2) a 26 2.0 8X'+14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 27 2.0 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 29 2.0 24X'+1X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 29 2.0 24X'+1X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 29 2.0 24X'+1X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 32 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 31		k(·10 ⁵)	
a_01 1.0	No.	[M/atm]	$Q(X)_{CMx}$
a_02 1.5	a 01	1.0	8X ⁷ +14X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +4X+1
a_03 1.5			
a_04 1.6			
a_06 1.7	a 04	1.6	$32X'+7X^6+5X^4+4X^3+2X+4$
a_07 1.7	a 05	1.6	$2(16X^7+6X^5+3X^2+2)$
a 07 1.7	a 06	1.7	$2X(7X^5+6X^4+5X^3+4X^2+3X+2)$
a_09 1.7	a_07	1.7	
a 09 1.7	a_08	1.7	
a_11 1.8	a 09	1.7	$16X^{7} + 21X^{6} + 6X^{5} + 3X^{2} + 6X + 2$
a_11 1.8	a_10	1.7	
a_13 1.8	a_11	1.8	
a_14 1.8			
a_15 1.8			
a_16 1.9	a_14	1.8	
a 17 1.9 16X ⁷ +14X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +4X+2 a 18 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a 19 1.9 8X ⁷ +21X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +6X+1 a 20 1.9 8X ⁷ +21X ⁶ +12X ⁵ +6X ² +6X+1 a 21 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 22 1.9 24X ⁷ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+3 a 23 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+1 a 24 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a 25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a 26 2.0 8X ⁷ +14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 27 2.0 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 28 2.0 2(8X ⁷ +7X ⁶ +5X ⁴ +4X ³ +2X+1) a 29 2.0 24X ⁷ +12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a 30 2.1 8X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 32 2.1 16X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 <td></td> <td></td> <td></td>			
a_18 1.9 2(8X'+7X^6+6X^5+3X^2+2X+1) a_19 1.9 8X'+21X^6+6X^5+5X^4+4X^3+3X^2+6X+1 a_20 1.9 8X'+21X^6+12X^5+6X^2+6X+1 a_21 1.9 24X'+7X^6+6X^5+5X^4+4X^3+3X^2+2X+3 a_22 1.9 24X'+6X^5+10X^4+8X^3+3X^2+3 a_23 1.9 24X'+7X^6+6X^5+5X^4+4X^3+3X^2+2X+3 a_24 1.9 2(8X'+7X^6+6X^5+3X^2+2X+1) a_25 1.9 2(16X'+5X^4+4X^3+2) a_26 2.0 8X'+14X^6+6X^5+10X^4+8X^3+3X^2+4X+1 a_27 2.0 16X'+7X^6+6X^5+10X^4+8X^3+3X^2+2X+2 a_28 2.0 2(8X'+7X^6+5X^4+4X^3+2X+1) a_29 2.0 24X'+12X^5+5X^4+4X^3+6X^2+3 a_30 2.1 8X'+7X^6+12X^5+10X^4+8X^3+6X^2+2X+1 a_31 2.1 16X'+7X^6+6X^5+10X^4+8X^3+3X^2+2X+2 a_32 2.1 16X'+7X^6+6X^5+10X^4+8X^3+3X^2+2X+2			
a_19 1.9 8X'+21X ⁵ +6X ⁵ +5X ⁴ +4X ³ +3X ² +6X+1 a_20 1.9 8X'+21X ⁵ +12X ⁵ +6X ² +6X+1 a_21 1.9 24X'+7X ⁵ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a_22 1.9 24X'+6X ⁵ +10X ⁴ +8X ³ +3X ² +3 a_23 1.9 24X'+7X ⁵ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a_24 1.9 2(8X'+7X ⁵ +6X ⁵ +3X ² +2X+1) a_25 1.9 2(16X'+5X ⁴ +4X ³ +2) a_26 2.0 8X'+14X ⁵ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a_27 2.0 16X'+7X ⁵ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_28 2.0 2(8X'+7X ⁵ +5X ⁴ +4X ³ +2X+1) a_29 2.0 24X'+12X ⁵ +5X ⁴ +4X ³ +2X+1) a_30 2.1 8X'+7X ⁵ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a_31 2.1 16X'+7X ⁵ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X'+7X ⁵ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X'+7X ⁵ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2			
a_20 8X'+21X ⁶ +12X ⁵ +6X ² +6X+1 a_21 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a_22 1.9 24X ⁷ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+3 a_23 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a_24 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a_25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a_26 2.0 8X ⁷ +14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a_27 2.0 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_28 2.0 2(8X ⁷ +7X ⁶ +5X ⁴ +4X ³ +2X+1) a_29 2.0 24X ⁷ +12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a_30 2.1 8X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a_31 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2			
a 21 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 22 1.9 24X ⁷ +6X ⁵ +10X ⁴ +8X ³ +3X ² +3 a 23 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 24 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a 25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a 26 2.0 8X ⁷ +14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a 27 2.0 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 28 2.0 2(8X ⁷ +7X ⁶ +5X ⁴ +4X ³ +6X ² +3 a 29 2.0 24X ⁷ +12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a 30 2.1 8X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 32 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +6X ² +2X+2			
a 22 1.9 24X ⁷ +6X ⁵ +10X ⁴ +8X ³ +3X ² +3 a 23 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a 24 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a 25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a 26 2.0 8X ⁷ +14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a 27 2.0 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 28 2.0 2(8X ⁷ +7X ⁶ +5X ⁴ +4X ³ +6X ² +2X+1) a 29 2.0 24X ⁷ +12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a 30 2.1 8X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +3X ² +2X+1 a 31 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a 32 2.1 16X ⁷ +7X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +2X+2			
a_23 1.9 24X ⁷ +7X ⁶ +6X ⁵ +5X ⁴ +4X ³ +3X ² +2X+3 a_24 1.9 2(8X ⁷ +7X ⁶ +6X ⁵ +3X ² +2X+1) a_25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a_26 2.0 8X ⁷ +14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a_27 2.0 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_28 2.0 2(8X ⁷ +7X ⁶ +5X ⁴ +4X ³ +2X+1) a_29 2.0 24X ⁷ +12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a_30 2.1 8X ⁷ +7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +6X ² +2X+1 a_31 2.1 16X ⁷ +7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X ⁷ +7X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +2X+2			
a_24 1.9			
a_25 1.9 2(16X ⁷ +5X ⁴ +4X ³ +2) a_26 2.0 8X'+14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a_27 2.0 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_28 2.0 2(8X'+7X ⁶ +5X ⁴ +4X ³ +2X+1) a_29 2.0 24X'+12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a_30 2.1 8X'+7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +6X ² +2X+1 a_31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X'+7X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +2X+2	a_23	1.9	
a_26 2.0 8X'+14X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +4X+1 a_27 2.0 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_28 2.0 2(8X'+7X ⁶ +5X ⁴ +4X ³ +2X+1) a_29 2.0 24X'+12X ⁵ +5X ⁴ +4X ³ +6X ² +3 a_30 2.1 8X'+7X ⁶ +12X ⁵ +10X ⁴ +8X ³ +6X ² +2X+1 a_31 2.1 16X'+7X ⁶ +6X ⁵ +10X ⁴ +8X ³ +3X ² +2X+2 a_32 2.1 16X'+7X ⁶ +12X ⁵ +5X ⁴ +4X ³ +6X ² +2X+2	a_24	1.9	
a_27 2.0	a_25	1.9	
a_28 2.0			
a_29 2.0			
$\begin{array}{lll} \underline{a}\underline{30}\underline{2.1} & \underline{8X^7 + 7X^6 + 12X^5 + 10X^4 + 8X^3 + 6X^2 + 2X + 1} \\ \underline{a}\underline{31}\underline{2.1} & \underline{16X^7 + 7X^6 + 6X^5 + 10X^4 + 8X^3 + 3X^2 + 2X + 2} \\ \underline{a}\underline{32}\underline{2.1} & \underline{16X^7 + 7X^6 + 12X^5 + 5X^4 + 4X^3 + 6X^2 + 2X + 2} \end{array}$	a_28	2.0	
a_31 2.1 $16X^7 + 7X^6 + 6X^5 + 10X^4 + 8X^3 + 3X^2 + 2X + 2$ a_32 2.1 $16X^7 + 7X^6 + 12X^5 + 5X^4 + 4X^3 + 6X^2 + 2X + 2$			$24X' + 12X^{3} + 5X^{4} + 4X^{3} + 6X^{2} + 3$
$a_322.1$ $16X^7 + 7X^6 + 12X^5 + 5X^4 + 4X^3 + 6X^2 + 2X + 2$			
1- 0010 4 10/1/4 1/ 1/ 1/01/2 10/1/4 10/1/2 11/4 11			
			$2(X^2-X+1)(8X^5+8X^4+6X^3+3X^2+X+1)$
$a_342.1$ $24X'+7X^6+10X^4+8X^3+2X+3$			
a_{35} 2.1 $16X^7 + 14X^6 + 6X^5 + 5X^4 + 4X^3 + 3X^2 + 4X + 2$	a_35	2.1	16X'+14X°+6X°+5X*+4X°+3X*+4X+2

No.	NI.	k _н (·10 ⁵)	000
a_011.0	NO.	[M/atm]	Q(X) _{CcM}
a 02 1.5 3X'+4X'6+3X'5+6X'2+14X+24 a 03 1.5 2(X'+4X'6+14X+8) a 04 1.6 4X'+2X'6+4X'4+5X'3+7X+32 a 05 1.6 2(2X'+3X'6+6X'2+16) a 06 1.7 2X(2X'5+3X'4+4X'3+5X'2+6X+7) a 07 1.7 3X'+2X'6+6X'6+12X'2+7X+24 a 08 1.7 3X'+4X'6+4X'4+5X'3+14X+24 a 09 1.7 2X'+6X'6+3X'5+6X'2+21X+16 a 10 1.7 4X'+3X'5+4X'4+5X'3+6X'2+32 a 11 1.8 2X'+4X'6+3X'5+4X'4+5X'3+6X'2+14X+16 a 12 1.8 3X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 13 1.8 2X'+6X'6+4X'4+5X'3+21X+16 a 14 1.8 3X'+2X'6+6X'6+4X'4+5X'3+14X+24 a 15 1.8 3X'+2X'6+6X'6+12X'2+7X+24 a 16 1.9 2X'+2X'6+6X'6+4X'4+5X'3+12X'2+7X+16 a 17 1.9 2X'1+4X'6+3X'5+4X'4+5X'3+6X'2+14X+16 a 18 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+14X+16 a 18 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+21X+8 a 20 1.9 X'+6X'6+3X'5+4X'4+5X'3+6X'2+21X+8 a 20 1.9 X'+6X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 22 1.9 3X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 22 1.9 3X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 23 1.9 3X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 24 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 24 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 24 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 24 1.9 2(X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 25 1.9 3X'+2X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 26 2.0 X'+4X'6+3X'5+4X'4+5X'3+6X'2+7X+24 a 28 2.0 2(X'+2X'6+3X'6+3X'6+10X'3+6X'2+7X+16 a 28 2.0 3X'+6X'5+4X'4+5X'3+10X'3+6X'2+7X+16 a 28 2.0 2(X'+2X'6+3X'6+3X'6+10X'3+6X'2+7X+16 a 32 2.1 2X'+2X'6+3X'6+3X'6+10X'3+6X'2+7X+16 a 32 2.1 2X'+2X'6+3X'6+3X'6+10X'3+6X'2+7X+16 a 32 2.1 2X'+2X'6+3X'6+3X'6+10X'3+6X'2+7X+16 a 32 2.1 2X'+2X'6+6X'6+3X'4+10X'3+6X'2+7X+16 a 32 2.1 2X'+2X'6+6X'6+3X'4+5X'3+12X'2+7X+16 a 33 2.1 2(X'-2X+1)(X'5+X'4+3X'3+6X'2+7X+16 a 33 2.1 2(X'-2X+1)(X'5+X'4+3X'3+6X'2+8X+8) a 34 2.1 3X'+2X'6+8X'6+10X'3+7X+24 3X'+2X'6+8X'6+10X'3+7X+24 3X'+2X'6+8X'6+10X'3+7X+24 3X'+2X'6+8X'6+	a 01	1.0	$X^7 + 4X^6 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 14X + 8$
a 03 1.5			
a 05 1.6			
a 06 1.7	a_04	1.6	4X ⁷ +2X ⁶ +4X ⁴ +5X ³ +7X+32
a 07 1.7	a_05	1.6	2(2X ⁷ +3X ⁵ +6X ² +16)
a 07 1.7	a_06	1.7	
a 08 1.7			
a 09 1.7	a_08	1.7	
a_11 1.8	a_09	1.7	
a_12 1.8	a_10	1.7	$4X^7 + 3X^5 + 4X^4 + 5X^3 + 6X^2 + 32$
a 13 1.8	a_11	1.8	$2X^{7} + 4X^{6} + 3X^{5} + 4X^{4} + 5X^{3} + 6X^{2} + 14X + 16$
a 14 1.8 3X'+4X^6+4X^4+5X^3+14X+24 a 15 1.8 3X'+2X^6+6X^5+12X^2+7X+24 a 16 1.9 2X'+2X^6+6X^5+4X^4+5X^3+12X^2+7X+16 a 17 1.9 2X'+4X^6+3X^5+4X^4+5X^3+6X^2+14X+16 a 18 1.9 2(X'+2X^6+3X^5+6X^2+7X+8) a 19 1.9 X'+6X^6+3X^5+4X^4+5X^3+6X^2+21X+8 a 20 1.9 X'+6X^6+6X^5+12X^2+21X+8 a 20 1.9 3X'+2X^6+3X^5+4X^4+5X^3+6X^2+7X+24 a 21 1.9 3X'+2X^6+3X^5+4X^4+5X^3+6X^2+7X+24 a 22 1.9 3X'+2X^6+3X^5+4X^4+5X^3+6X^2+7X+24 a 23 1.9 3X'+2X^6+3X^5+6X^2+7X+8) a 24 1.9 2:(X'+2X^6+3X^5+6X^2+7X+8) a 25 1.9 2(2X'+4X^4+5X^3+16) a 26 2.0 X'+4X^6+3X^5+8X^4+10X^3+6X^2+7X+16 a 28 2.0 2(X'+2X^6+4X^4+5X^3+12X^2+24 a 29 2.0 3X'+6X^5+4X^4+5X^3+12X^2+24 a	a_12	1.8	
a 15 1.8 3X ⁷ +2X ⁶ +6X ⁵ +12X ² +7X+24 a 16 1.9 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 17 1.9 2X ⁷ +4X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +14X+16 a 18 1.9 2(X ⁷ +2X ⁶ +3X ⁵ +6X ² +7X+8) a 19 1.9 X ⁷ +6X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +21X+8 a 20 1.9 X ⁷ +6X ⁶ +6X ⁵ +12X ² +21X+8 a 20 1.9 X ⁷ +6X ⁶ +6X ⁵ +12X ² +21X+8 a 21 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 22 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2X ⁶ +3X ⁵ +6X ² +7X+24) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X ⁷ +4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 28 2.0 2(X ⁷ +2X ⁶ +4X ⁴ +5X ³ +12X ² +24 a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+8 a 29 <td< td=""><td>a_13</td><td>1.8</td><td></td></td<>	a_13	1.8	
a 16 1.9 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 17 1.9 2X ⁷ +4X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +14X+16 a 18 1.9 2(X ⁷ +2X ⁶ +3X ⁵ +6X ² +7X+8) a 19 1.9 X'+6X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +21X+8 a 20 1.9 X'+6X ⁶ +6X ⁵ +12X ² +21X+8 a 21 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 22 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2·X ⁶ +3X ⁵ +6·X ² +7·X+8) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X'+4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 28 2.0 2(X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +7X+8) a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 30 <td>a_14</td> <td>1.8</td> <td></td>	a_14	1.8	
a 17 1.9 2X ⁷ +4X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +14X+16 a 18 1.9 2(X ⁷ +2X ⁶ +3X ⁵ +6X ² +7X+8) a 19 1.9 X'+6X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +21X+8 a 20 1.9 X'+6X ⁶ +6X ⁵ +12X ² +21X+8 a 21 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 22 1.9 3X ⁷ +2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+24 a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2·X ⁶ +3X ⁵ +6·X ² +7·X+8) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X'+4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 27 2.0 2X'+2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X'+2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+8 a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X'+2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +6X ² +12X ² +7X+16 a 3	a_15	1.8	
a_18 1.9			
a_19 1.9	a_17	1.9	
a_20 1.9 X'+6X^6+6X^5+12X^2+21X+8 a_21 1.9 3X'+2X^6+3X^5+4X^4+5X^3+6X^2+7X+24 a_22 1.9 3X'+3X^5+8X^4+10X^3+6X^2+24 a_23 1.9 3X'+2X^6+3X^5+4X^4+5X^3+6X^2+7X+24 a_24 1.9 2·(X'+2·X^6+3·X^5+6·X^2+7·X+8) a_25 1.9 2(2X'+4X^4+5X^3+16) a_26 2.0 X'+4X^6+3X^5+8X^4+10X^3+6X^2+14X+8 a_27 2.0 2X'+2X^6+3X^5+8X^4+10X^3+6X^2+7X+16 a_28 2.0 2(X'+2X^6+4X^4+5X^3+12X^2+24 a_30 2.1 X'+2X^6+6X^5+8X^4+10X^3+12X^2+7X+8 a_31 2.1 2X'+2X^6+6X^5+8X^4+10X^3+12X^2+7X+16 a_32 2.1 2X'+2X^6+6X^5+4X^4+5X^3+12X^2+7X+16 a_33 2.1 2(X^2-X+1)(X^5+X^4+3X^3+6X^2+8X+8) a_34 2.1 3X'+2X^6+8X^4+10X^3+7X+24	a_18	1.9	
a 21 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 22 1.9 3X ⁷ +3X ⁵ +8X ⁴ +10X ³ +6X ² +24 a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2·X ⁶ +3·X ⁵ +6·X ² +7·X+8) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X ⁷ +4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +14X+8 a 27 2.0 2X ⁷ +2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 28 2.0 2(X ⁷ +2X ⁶ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+8 a 31 2.1 2X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a 34 2.1 3X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +7X+24	a_19	1.9	
a 22 1.9 3X ⁷ +3X ⁵ +8X ⁴ +10X ³ +6X ² +24 a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2·X ⁶ +3·X ⁵ +6·X ² +7·X+8) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X ⁷ +4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +14X+8 a 27 2.0 2X ⁷ +2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 28 2.0 2(X ⁷ +2X ⁶ +4X ⁴ +5X ³ +7X+8) a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a 34 2.1 3X ⁷ +2X ⁶ +8X ⁴ +10X ³ +7X+24	a_20	1.9	
a 23 1.9 3X ⁷ +2X ⁶ +3X ⁵ +4X ⁴ +5X ³ +6X ² +7X+24 a 24 1.9 2·(X ⁷ +2·X ⁶ +3·X ⁵ +6·X ² +7·X+8) a 25 1.9 2(2X ⁷ +4X ⁴ +5X ³ +16) a 26 2.0 X'+4X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +14X+8 a 27 2.0 2X'+2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 28 2.0 2(X'+2X ⁶ +4X ⁴ +5X ³ +7X+8) a 29 2.0 3X ⁷ +6X ⁵ +4X ⁴ +5X ³ +12X ² +24 a 30 2.1 X'+2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+16 a 31 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a 34 2.1 3X'+2X ⁶ +8X ⁴ +10X ³ +7X+24	a_21	1.9	
$\begin{array}{lll} \hline a & 24 & 1.9 & 2 \cdot (X^7 + 2 \cdot X^6 + 3 \cdot X^5 + 6 \cdot X^2 + 7 \cdot X + 8) \\ \hline a & 25 & 1.9 & 2(2X^7 + 4X^4 + 5X^3 + 16) \\ \hline a & 26 & 2.0 & X^7 + 4X^6 + 3X^5 + 8X^4 + 10X^3 + 6X^2 + 14X + 8 \\ \hline a & 27 & 2.0 & 2X^7 + 2X^6 + 3X^5 + 8X^4 + 10X^3 + 6X^2 + 7X + 16 \\ \hline a & 28 & 2.0 & 2(X^7 + 2X^6 + 4X^4 + 5X^3 + 7X + 8) \\ \hline a & 29 & 2.0 & 3X^7 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 24 \\ \hline a & 30 & 2.1 & X^7 + 2X^6 + 6X^5 + 8X^4 + 10X^3 + 12X^2 + 7X + 16 \\ \hline a & 31 & 2.1 & 2X^7 + 2X^6 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 7X + 16 \\ \hline a & 32 & 2.1 & 2X^7 + 2X^6 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 7X + 16 \\ \hline a & 33 & 2.1 & 2(X^2 - X + 1)(X^5 + X^4 + 3X^3 + 6X^2 + 8X + 8) \\ \hline a & 34 & 2.1 & 3X^7 + 2X^6 + 8X^4 + 10X^3 + 7X + 24 \\ \hline \end{array}$			
$\begin{array}{lll} a_25 \ 1.9 & 2(2X^7 + 4X^4 + 5X^3 + 16) \\ a_26 \ 2.0 & X^7 + 4X^5 + 3X^5 + 8X^4 + 10X^3 + 6X^2 + 14X + 8 \\ a_27 \ 2.0 & 2X^7 + 2X^5 + 3X^5 + 8X^4 + 10X^3 + 6X^2 + 7X + 16 \\ a_28 \ 2.0 & 2(X^7 + 2X^5 + 4X^4 + 5X^3 + 7X + 8) \\ a_29 \ 2.0 & 3X^7 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 24 \\ a_30 \ 2.1 & X^7 + 2X^5 + 6X^5 + 8X^4 + 10X^3 + 12X^2 + 7X + 16 \\ a_31 \ 2.1 & 2X^7 + 2X^5 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 7X + 16 \\ a_32 \ 2.1 & 2X^7 + 2X^5 + 6X^5 + 4X^4 + 5X^3 + 12X^2 + 7X + 16 \\ a_33 \ 2.1 & 2(X^2 - X + 1)(X^5 + X^4 + 3X^3 + 6X^2 + 8X + 8) \\ a_34 \ 2.1 & 3X^7 + 2X^5 + 8X^4 + 10X^3 + 7X + 24 \end{array}$	a_23	1.9	
a_26 2.0 X'+4X'5+3X'5+8X'4+10X'3+6X'2+14X+8 a_27 2.0 2X'+2X'5+3X'5+8X'4+10X'3+6X'2+7X+16 a_28 2.0 2(X'+2X'5+4X'4+5X'3+7X+8) a_29 2.0 3X'+6X'5+4X'4+5X'3+12X'2+24 a_30 2.1 X'+2X'5+6X'5+8X'4+10X'3+12X'2+7X+8 a_31 2.1 2X'+2X'5+3X'5+8X'4+10X'3+6X'2+7X+16 a_32 2.1 2X'7+2X'5+6X'5+4X'4+5X'3+12X'2+7X+16 a_33 2.1 2(X'2-X+1)(X'5+X'4+3X'3+6X'2+8X+8) a_34 2.1 3X'+2X'5+8X'4+10X'3+7X+24	a_24	1.9	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	a_25	1.9	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
a 29 2.0 3X'+6X5+4X4+5X3+12X2+24 a 30 2.1 X'+2X6+6X5+8X4+10X3+12X2+7X+8 a 31 2.1 2X'+2X6+3X5+8X4+10X3+6X2+7X+16 a 32 2.1 2X'+2X6+6X5+4X4+5X3+12X2+7X+16 a 33 2.1 2(X2-X+1)(X5+X4+3X3+6X2+8X+8) a 34 2.1 3X'+2X6+8X4+10X3+7X+24			
a 30 2.1 X ⁷ +2X ⁶ +6X ⁵ +8X ⁴ +10X ³ +12X ² +7X+8 a 31 2.1 2X ⁷ +2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a 32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a 33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a 34 2.1 3X ⁷ +2X ⁶ +8X ⁴ +10X ³ +7X+24			
a_31 2.1 2X ⁷ +2X ⁶ +3X ⁵ +8X ⁴ +10X ³ +6X ² +7X+16 a_32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a_33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a_34 2.1 3X ⁷ +2X ⁶ +8X ⁴ +10X ³ +7X+24			
a_32 2.1 2X ⁷ +2X ⁶ +6X ⁵ +4X ⁴ +5X ³ +12X ² +7X+16 a_33 2.1 2(X ² -X+1)(X ⁵ +X ⁴ +3X ³ +6X ² +8X+8) a_34 2.1 3X ⁷ +2X ⁶ +8X ⁴ +10X ³ +7X+24			
$a_3^3 = 2.1$ $2(X^2 - X + 1)(X^5 + X^4 + 3X^3 + 6X^2 + 8X + 8)$ $a_3^4 = 2.1$ $3X^7 + 2X^6 + 8X^4 + 10X^3 + 7X + 24$			
$a_342.1$ $3X^7 + 2X^6 + 8X^4 + 10X^3 + 7X + 24$			
$ a_35 2.1$ $ 2X^7+4X^6+3X^5+4X^4+5X^3+6X^2+14X+16 $			
	a_35	2.1	$2X'+4X^{6}+3X^{5}+4X^{4}+5X^{3}+6X^{2}+14X+16$