Thermal Energy Efficiency Analysis for Residential Buildings

Lorentz JÄNTSCHI, Mugur BÅLAN, Margareta Emilia PODAR, Sorana Daniela BOLBOACÅ

lori@academicdirect.org, Mugur.Balan@termo.utcluj.ro, emilia@chimie.utcluj.ro, sbolboaca@umfcluj.ro

http://vl.academicdirect.org/molecular_dynamics/heating_buildings/

The concern of energy conservation, the reduction of green house gases and sustainability was continuously growing in last years. The concept of green building has been introduced, and refers the practice of increasing the efficiency with which buildings and their sites use and harvest energy, water, and materials, and reducing building impacts on human health and on environment, through better design, construction, operation, maintenance, and removal. Starting from the national and international trends in development of environmental performance of new and existing home buildings, an interactive system for assisting the calculation of home energy efficiency has been created and validated, and its performances are presented.

Mathematical Model

According to [9], the total heat flux losses through a building (Φ) is given by the formula:

 $\Phi = \Phi_1 + \Phi_2 + \Phi_3 \ (1)$

where Φ_1 = the heat flux losses through transmission, Φ_2 = the heat flux losses through ventilation, and Φ_3 = the heat flux needed for preparing the domestic hot water. The heat flux lost through transmission is distributed between the walls, the floor, the ceiling and the windows. According to these, the formula of the Φ_1 is: $\Phi_1 = \Phi_{1,1} + \Phi_{1,2} + \Phi_{1,3} + \Phi_{1,4} + \Phi_{1,5}$ (2) where $\Phi_{k,i}$ = heat flux losses through: walls ($\Phi_{1,2}$), windows ($\Phi_{1,3}$), main floor ($\Phi_{1,4}$), and basement ($\Phi_{1,5}$). The heat flux losses through ventilation depend directly by the global insulation of the building

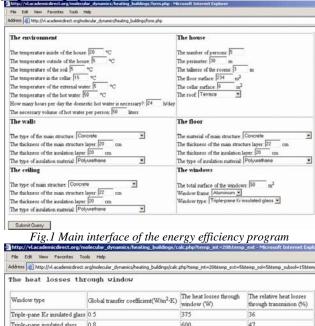
where $\Phi_{k,j}$ = heat flux losses through: walls ($\Phi_{1,1}$), ceiling ($\Phi_{1,2}$), windows ($\Phi_{1,3}$), main floor ($\Phi_{1,4}$), and basement ($\Phi_{1,5}$). The heat flux losses through ventilation depend directly by the global insulation of the building in conformity with formula: $\Phi_2 = \varepsilon \cdot \Phi_1(3)$

where $\varepsilon = a$ coefficient correlated with the global insulation of the building. This coefficient is assumed: 0.7 - buildings without insulation, 0.8 - with minimal insulation, 0.9 - good insulation, and 1 - very good insulation (buildings with low energy consumption, passive buildings regarding the energy consumption). The heat flux needed for preparing the domestic hot water depend on the following parameters: number of persons (n), the working time per day of water heating system (τ - seconds), the volume of hot water needed per person per day, water density, the specific heat of water, the imposed temperature of hot water (t_{Wi}), and the assumed temperature of the external cold water (t_{We}). The heat flux needed for preparing the domestic hot water is given by the formula: $\Phi_3 = n \rho \cdot V \cdot c_p \cdot (t_{Wi} - t_{We})/\tau$ (4)

The expression of heat fluxes lost through walls $(\Phi_{1,1})$, ceiling $(\Phi_{1,2})$, windows $(\Phi_{1,3})$, main floor $(\Phi_{1,4})$, and basement $(\Phi_{1,5})$ must be reported to the total surface of the house $(S_{1,i}$ taking into consideration only those elements that are connected with the outside), according to the global heat transfer coefficient $(k_{1,i})$, temperature from the outside of the building (t_{out}) , inside of the building (t_{ini}) , soil (t_{soil}) and basement (t_{sub}) . The generic formula of the heat fluxes lost through transmission become $[t_1 = t_{int} (i = 1..5), t_0 = t_{out} (i = 1..3), t_0 = t_{soil} (i = 4), t_0 = t_{sub} (i = 5)]$: The heat transfer coefficient is a function of the convective heat transfer from inside $(\alpha_{1,i,1})$ and from the outside $(\alpha_{1,i,2})$, heating conductivity $(\lambda_{1,i,1} - for$ the main structure, and $\lambda_{1,i,2} - for$ the insulation structure). The

formula is: $k_{1,i-1} = \alpha_{1,i-1} + \alpha_{1,i,2} + \delta_{1,i,1}/\lambda_{1,i,1} + \delta_{1,i,2}/\lambda_{1,i,2} = (6)$

The assumed value of the inside convective heating transfer was considered equal with 8 W/m^2K (corresponding to normal natural convection conditions); for the outside convective heat transfer coefficient was assumed a value of 25 W/m^2K (corresponding to the most unfavourable conditions). In the case of the main floor, the heat transfer coefficient has a specific value for the outside and other value for the inside. It was considered that the outside convective heat transfer coefficient for a building without basement.


Construction Parameters

The system validation was performed through analysis of the energy efficiency of a new building. Starting from the supposition that a field of 2300m2 is available in Alba Iulia County, Romania, a residential building has been designed and the characteristics of the energy efficiency were analyzed. The considered environmental conditions were as follows: *The wind speed*: up to 40 km/h; *The relative humidity*: could vary from 60% to 90%; *The distribution of raining water*: could not be considering homogenous, some variations existing according with the season and the calendaristic month. The average in the last year was considered (equal with 714 mm). The characteristics for the experimental designed residential building are below (Dimensions of the Home and Rooms Surfaces).

JCIOW (DIIIC	clow (Dimensions of the Home and Rooms Surface							
Room	Kitchen	Living room	Bathroom1	Bathroom2				
Surface (m^2)	27.5	36	9	7				
Bedroom1	Bedroom2	Bedroom3	Vestibule	Lobby				
21.25	10.5	10.5	10	8.25				
-								

Results

The application designed for assisting the users in analysis of the heat flux requirement for a residential building has developed and is available online. Programs have been designed and implemented. The form.php program allows the user to introduce the characteristics of the environment and of the building according to personal desires and/or own building. Based on the mathematical model presented in Material and Method section, a total number of twenty-five functions were implemented and stored in func.php file. The func.php computes the heat losses through windows, the heat losses through walls, and the global heat losses by transmission. The parameters displayed by the program are graphically represented.

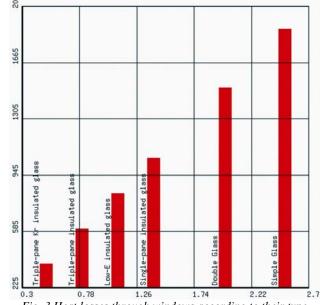
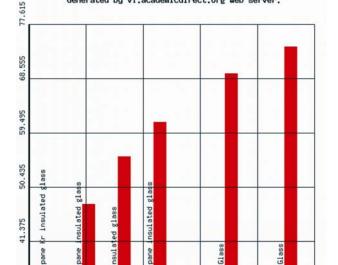



Fig. 3 Heat losses through windows according to their type Generated by vl.academicdirect.org web server.

	•			ue i								or the
ie	ner	ate	dt	9 0	1.0	cade	micdi	rect	. or	g we	bs	erve
	73	5	7:	35	7:	35	735	73	5	735	5	735
	26	9	41	19	4	51	473	58	1	629	,	677
	18	8	31	15	3	56	368	49	0	555	5	629
	15	0	20	60	29	97	308	43	0	501		589
	12	6	22	25	2!	59	269	38	5	458	,	555
Jer	11	.0	20	90	23	32	241	35	2	424	1	526
structure layer	98		18	81	21	11	219	32	5	397	,	501
struct	89		10	66	19	94	202	30	3	373	8	478
Main	<mark>82</mark> Mai	-	Î	5 4	-	and the second second	188 mal c	And in case of the local division of the loc	-	353 ivity	8	458
	Ge	ner	ate	d by	v1.	acad	emicdia	ect.	org	web	ser	ver.
		97	3	97	B	979	979	980				
								500		981	98	1
		10	03	10	98 1	1009	1009					111
	r layer	10	80	10:	13	1014	1009 1014	101 101	.0 1 .5 1	1011	18 18	111
	floor	10 10	98 09	10: 10:	13 1 14 1	1014 1015	1009	101 101 101	.0 1 .5 1	1011 1016 1017	18 18 18	11 111 116 117
	the main floor	10 10 10	08 09 17	10: 10: 10:	13 1 14 1 22 1	1014 1015 1023	1009 1014 1015	101 101 101	.0 1 .5 1 .6 1	1011 1016 1017 1024	10 10 10	111 116 117 125
	Type of the main floor	10 10 10 10	08 09 17 20	10: 10: 10: 10: f th	13 1 14 1 22 1 24 1 26 1	1014 1015 1023 1025 1027	1009 1014 1015 1023 1025 1027	101 101 101 102 102 102	.0 1 .5 1 .6 1 .4 1 .7 1 .9 1	1011 1016 1017 1024 1027	10 10 10	111 116 117 125 127
	Type of the main floor	10 10 10 10	08 09 17 20	10: 10: 10: 10: f th	13 1 14 1 22 1 24 1 26 1	1014 1015 1023 1025 1027	1009 1014 1015 1023 1025 1027	101 101 101 102 102 102	.0 1 .5 1 .6 1 .4 1 .7 1 .9 1	1011 1016 1017 1024 1027	10 10 10	00
	Type of the main floor	10 10 10 10 10	98 99 17 20 22 20 22	10: 10: 10: 10: 10: f th	13 1 14 1 22 1 24 1 26 1 26 1 26 1 26 1	L014 L015 L023 L025 L025	1009 1014 1015 1023 1025 1027 tructuu tructuu trect.or	101 101 101 102 102 102 20	.0 1 .5 1 .6 1 .4 1 .7 1 .9 1 .9 1	1011 1016 1017 1024 1027 1029	16 16 16 16	00
	Type of the main floor	10 10 10 10	08 09 17 20 22	10: 10: 10: 10: 10: f th by th	113 1 14 1 22 1 24 1 26 1	1014 1015 1023 1025 1027	1009 1014 1015 1023 1025 1027	101 101 102 102	.0 1 .5 1 .6 1 .4 1 .9 1 .9 1	L011 L016 L017 L024 L027	16 16 16 16 16 2 2	00
	Type of the main floor	10 10 10 10 10		10: 10: 10: 10: f, th	13 1 14 1 22 1 24 1 26 1 11 12	1014 1015 1023 1025 1027 1027 14 14	1009 1014 1015 1023 1025 1027 1027 1027 1027	191 191 191 192 192 192 *e las * ueb 28 21	.0 1 .5 1 .6 1 .4 1 .7 1 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .9	1011 1016 1024 1027 1029 00. 25 26	10 10 10 10 10 2 2 2	29

Inpre-pane insulated glass	0.0	000	147	
Low-E insulated glass	1.1	825	55	
Single-pane insulated glass	1.4	1050	61	
Double Glass	2	1500	69	
Simple Glass	2.5	1875	74	

Fig. 2 Heat losses and transmission according to windows type

http://vLacademicdirect.org/molecular_dynamics/heating_buildings/calc.php?temp_int=20&temp_ext - Microsoft Inter

File Edit View Favorites Tools Help

Address 🗃 http://vl.academicdrect.org/molecular_dynamics/heating_buildings/calc.php?temp_int=208temp_ext=58temp_sol=58temp_subsolv

The dependences between heat losses through wall and thickness and type of the main structure and insulation layers

R_Ct	R_Gs	I_Ct	I_Gs	Q_P		Graphic
1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	0 0 0 0 0 0 0	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0 5 10 15 20 25 30 35	4286 206 105 71 53 43 36 31	1	X Axis (Main structure thermal conductivity Y Axis: (Main structure leyer's thicknesses Z min: 92 Z max [1072 Colors: [253 Points: [30 Diagram

Fig. 5 Heat losses through walls: thickness, resistance, insulation **Discussions**

The evaluation of the developed application can be done through analyzing its advantages (noted with + sign) and disadvantages (noted with - sign) as followed:

Assisting calculation of coefficients and heat losses: according to the input data, the application compute and display in a real time a number of twenty-four coefficients

Accessibility: free access and availability at any hour
Multi-user: can be used simultaneously by more than one user

Fig. 4 Heat losses through transmission vs. windows type \bigoplus Interaction with the users: the users can choose his/her own residential building parameters

+ Interactivity: the user is free to choose the graphical representation of the interest parameters

H Multi-tasking: the application can be use simultaneously with other applications

Updating: the updating of the application is an effortless process, and can be done in real time and as many time as it is consider being opportune

The use of application requires minimum computers skills
 Financial estimations were not included into application
 There are not included into application any evaluation of the construction (such as strength structure calculations, etc)
 The application can be use just by the user that had a computer connected to the Internet.

Conclusion

The presented software application can be considered useful in the computer assisted analysis of buildings, it calculates the components of the heat flux demands and it allows important observations about the parameters that influence the heat losses.

5	10	14	18	21	25	28	30	33
5	10	14	18	22	25	28	31	34
5 6	10	15	19	23	26	29	32	34
6	11	15	20	23	27	30	33	35
6	11	16	20	24	27	30	33	36

14 17 21 24 27

Fig9 Heat losses nec

essary

to warm up the water vs persons' number and hot water volume

Selected references

T. Madarasan, and M. Balan, Technical Thermotechnics, Sincron Publishing House, Cluj-Napoca, Romania, 1999, pp.57–65.

PHP [online]. The PHP Group; © 2001-2005 [cited 2005 August]. <u>http://www.php.net</u>
H. I. Nascu, and L. Jäntschi, "Multiple Choice Examination System 1. Database Design and Implementation for General Chemistry", Leonardo Journal of Sciences, 5, p.18–33, 2004.
L. Jäntschi, H. I. Naşcu, "Free Software Development. 3. Numerical Description of Soft Acid with Soft Base Titration", Leonardo Journal of Sciences, 1, p. 53–68, 2002.
S. D. Bolboaca, L. Jäntschi, & al., "Skeletal Maturity Assessment Client-Server Application", Roentgenologia&Radiologia, XLIV(3), p. 189–193, 2005.
L. Jäntschi, "Free Software Development. 1. Fitting Statistical Regressions", Leonardo Journal of Sciences, 1, pp. 31–52, 2002.

Windows&daylighting [online]. http://windows.lbl.gov/software/

ACT House Energy Rating Scheme (ACTHERS) [online]. © Australian Capital Territory http://www.actpla.act.gov.au/design-guide/acthers/

E. M. Podar, M. Balan, and L. Jäntschi, "Software for Study of a Household Heating Flux Requirement". Proceeding of the 2006 IEEE-TTTC – International Conference on Automation, Quality and Testing, Robotics, 2006, May 23-26, Cluj-Napoca, Romania.