ENTROPY AND ENERGY OF SUBSTRUCTURES OBTAINED BY VERTEX CUTTING IN REGULAR TREES

LORENTZ JÄNTSCHI AND SORANA-DANIELA BOLBOACA

The entropy (a quantitative measure of disorder in a system) and informational energy (informational "disorder") of substructures obtained by cutting the vertex in regular trees was investigated and is presented. In a regular tree every vertex has the same number of children and leafs had no children at all. The information energy was defined as Energy $=\sum p_{i}^{2}$, where $p_{i}=$ the probability of apparition of a substructure of i size. The entropy was defined as Entropy $=$ $-p_{i} \cdot \log _{2} \cdot p_{i}$, where p_{i} has the signification described above. Regarding the entropy the following remarks can be done: (a) the entropy decrease with ramification; (b) the entropy increase with increasing of the number of levels; and (c) the decreasing with ramification is more accentuate compared with the increasing of the number of levels. Regarding the information energy a decrease with the decrease of ramification and with the increase of number of levels was observed.

References

[1] Jäntschi L, Diudea M V. Subgraphs of pair vertices. J Math Chem DOI:10.1007/s10910-008-9411-6.
[2] Bolboacă S D, Jäntschi L. How good can the characteristic polynomial be for correlations? Int J Mol Sci 2007;8(4):335-345.
[3] Jäntschi L. Characteristic and Counting Polynomials of Nonane Isomers. AcademicDirect, Internet. 2007, p. 101.

Technical University of Cluj-Napoca, Romania, 15 Constantin Daicoviciu Street, 400020 Cluj-Napoca, Romania.

E-mail address: lori@j.academicdirect.org
URL: http://lori.academicdirect.org
"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 13 Emil Isac Street, 400023 Cluj-Napoca, Romania.

E-mail address: sbolboaca@umfcluj.ro
URL: http://sorana.academicdirect.ro

[^0]
Entropy and Energy of Substructures Obtained by Vertex Cutting in Regular Trees

Lorentz JÄNTSCHI
and
Sorana-Daniela BOLBOACĂ

Technical University of Cluj-Napoca and
"Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Romania

Having a regular b-tree with Y levels (Figure 1) the removal of a arbitrary vertex from the tree will generate from one (when removal are applied to a leaf) to two (when removal are applied to the root), and to three (when removal are applied to a inside node) sub-graphs.

Figure 1. A b-Tree with Y levels, $\mathrm{T}(\mathrm{b}, \mathrm{Y})$

By removing once at the time every vertex from the tree, it is possible to evaluate the number of sub-graphs by size which may be obtained.

Somebody may say that systematically removing of every vertex is not a usual procedure for a given practical problem. Indeed, but usually in a real application an issue may be the removal of one vertex when the specification of which one vertex is to be removed is unknown. One example may be then having a network topology like a tree (let us say a Regional Internet Registry providing Internet resource allocations). In these cases assessing of the impact when a node is removed it is an important issue for projecting the network. Then we will move from complete characterization of a set (the set of all sub-graphs obtained by removing of an arbitrary vertex of a tree) to an issue of probability (obtaining of the appearance probability of a set of a given size). In terms of the entire structure (the tree), even the appearance probability of a set of a given size may not be a relevant information and we may want to obtain a global
parameter which to characterize the tree under the given circumstances (removal of one vertex).

Two parameters are often used for characterization of the mess: the information entropy (or Shannon's entropy [${ }^{1}$], a measure of the uncertainty associated with a random variable) and information energy (Onicescu's energy $\left[{ }^{2}\right]$, a supplement and a complement of the Shannon's entropy, a formula obtained complementing to 1 the Simpson's measure of diversity $\left[{ }^{3}\right]$). Both measures proved to be very useful for characterizing physical and chemical processes [${ }^{4}$].

[^1]Let us define these two measures of information. Let be X a discrete variable taking the values $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ and $\mathrm{p}(\cdot)$ the probability mass function (gives the probability that a discrete random variable is exactly equal to a value).

The Shannon's entropy $\mathrm{H}(\mathrm{X})$ is given by (where logarithm is taken to base 2 to give a value in bits): $\mathrm{H}(\mathrm{X})=-\Sigma_{1 \leq i \leq \mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right) \log _{2}\left(\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)\right)$

The Onicescu's energy $E(X)$ is given by:
$\mathrm{E}(\mathrm{X})=\Sigma_{1 \leq i \leq \mathrm{n}} \mathrm{P}^{2}\left(\mathrm{x}_{\mathrm{i}}\right)$
Let us recall the structure from figure 1 . The following formula (NSSP) describes completely the number of substructures (coefficients of the X variable) by sizes (powers of the X variable):
$\operatorname{NSSP}(T(b, Y))=\sum_{k=1}^{Y} b^{k}\left(X^{\frac{b^{Y+1-k}-1}{b-1}}+X^{\frac{b^{Y+1}-b^{Y+1-k}}{b-1}}\right)+\frac{b^{Y+1}-1}{b-1} X^{0}$
The formula (eq3) give the complete description of the substructures counts and sizes for any $\mathrm{Y}, \mathrm{b}>0$. The following table (Table 1)
gives the substructures and sizes for some particular cases of trees. Note that the coefficient of X^{0} counts the total number of vertices in the original structure.
Table 1. Substructures by removal of an arbitrary vertex for some regular trees

b	Y	Formula	Comments
1	1	$2 \mathrm{X}^{0}+2 \mathrm{X}^{1}$	A graph with two vertices and one edge
1	>1	$(\mathrm{Y}+1) \mathrm{X}^{0}+2 \mathrm{X}\left(\mathrm{X}^{\mathrm{Y}}-1\right) /(\mathrm{X}-1)$	For $\mathrm{b}=1$ tree degenerates in a path
>1	1	$(\mathrm{~b}+1) \mathrm{X}^{0}+\mathrm{b}\left(\mathrm{X}+\mathrm{X}^{\mathrm{b}}\right)$	For $\mathrm{Y}=1$ tree degenerates in a star
b	2	$\left(\mathrm{~b}^{2}+\mathrm{b}+1\right) \mathrm{X}^{0}+\mathrm{b}\left(\mathrm{X}^{\mathrm{b+1}+}+\mathrm{X}^{\mathrm{b} 2}\right)+\mathrm{b}^{2}\left(\mathrm{X}+\mathrm{X}^{\mathrm{b}+\mathrm{b}}\right)$	Powers of X's may be repeated in the series

Recalling
$\operatorname{NSSP}(T(b, Y))=\sum_{k=1}^{Y} b^{k}\left(X^{\frac{b^{Y+1-k}-1}{b-1}}+X^{\frac{b^{Y+1}-b^{\gamma+1-k}}{b-1}}\right)+\frac{b^{Y+1}-1}{b-1} X^{0}$
We may want to find roots of:
$b^{\mathrm{Y}+1-\mathrm{k}_{1}}-1=\mathrm{b}^{\mathrm{Y}+1}-\mathrm{b}^{\mathrm{Y}+1-\mathrm{k}_{2}}$ i.e. $1+\mathrm{b}^{\mathrm{k}_{2}-\mathrm{k}_{1}}=\mathrm{b}^{\mathrm{k}_{2}}+\mathrm{b}^{\mathrm{k}_{2}-(\mathrm{Y}+1)}$
Excluding $\mathrm{b}=1$, since $\mathrm{b}, \mathrm{Y}, \mathrm{k}_{1}$, and k_{2} are natural not null numbers, and natural too are 1 and $b^{k_{2}}$ the equality (eq4) can be satisfied only for $b^{k_{2}-k_{1}}=b^{k_{2}-(Y+1)}$ which implies that the only solutions of (eq5) is for $\mathrm{k}_{1}=\mathrm{Y}+1$ (implying as consequence $\mathrm{b}=1$). The conclusion that can be drawn from here is that for $\mathrm{b}>1$ all terms inside the sum from (eq3) are distinct.

Since the problem of sub-graphs sizes occurrences $\left(n_{0}\right)$ was solved in the general case for $\mathrm{b}>1$ (no repeats in terms of eq3) we are able to calculate it for a given Y and a given b (note that the problem can be extended to any b less or equal to a given value and for a Y less or equal to a given value):
$n_{o}\left(\frac{b^{Y+1-k}-1}{b-1}\right)=\operatorname{coef}\left(X^{\frac{b^{Y+1-k}-1}{b-1}}\right)=n_{o}\left(\frac{b^{Y+1}-b^{Y+1-k}}{b-1}\right)=\operatorname{coef}\left(X^{\frac{b^{Y+1}-b^{Y+1-k}}{b-1}}\right)$

> (eq5)

It follows that probabilities are given by:
$\mathrm{p}\left(\frac{\mathrm{b}^{\mathrm{Y}+1-\mathrm{k}}-1}{\mathrm{~b}-1}\right)=\mathrm{p}\left(\frac{\mathrm{b}^{\mathrm{Y}+1}-\mathrm{b}^{\mathrm{Y}+1-\mathrm{k}}}{\mathrm{b}-1}\right)=\frac{\mathrm{b}^{\mathrm{k}}}{2 \sum_{\mathrm{k}=1}^{\mathrm{Y}} \mathrm{b}^{\mathrm{k}}}=\frac{\mathrm{b}^{\mathrm{k}}(\mathrm{b}-1)}{2\left(\mathrm{~b}^{\mathrm{Y}}-1\right)}$
Replacing of (eq6) into (eq1) and (eq2) is now only a matter of calculation:

$$
\begin{align*}
& H(T(b, Y))=-2 \sum_{k=1}^{\mathrm{Y}} \frac{\mathrm{~b}^{\mathrm{k}}(\mathrm{~b}-1)}{2\left(\mathrm{~b}^{\mathrm{Y}}-1\right)} \log _{2}\left(\frac{\mathrm{~b}^{\mathrm{k}}(\mathrm{~b}-1)}{2\left(\mathrm{~b}^{\mathrm{Y}}-1\right)}\right)=\sum_{\mathrm{k}=1}^{\mathrm{Y}} \frac{\mathrm{~b}^{\mathrm{k}}(\mathrm{~b}-1)}{\left.\mathrm{b}^{\mathrm{Y}}-1\right)} \log _{2}\left(\frac{2\left(\mathrm{~b}^{\mathrm{Y}}-1\right)}{\mathrm{b}^{\mathrm{k}}(\mathrm{~b}-1)}\right) \\
& \mathrm{E}(\mathrm{~T}(\mathrm{~b}, \mathrm{Y}))=2 \sum_{\mathrm{k}=1}^{\mathrm{Y}} \frac{\mathrm{~b}^{2 \mathrm{k}}(\mathrm{~b}-1)^{2}}{4\left(\mathrm{~b}^{\mathrm{Y}}-1\right)^{2}}=\frac{\mathrm{b}^{2}}{2} \frac{\mathrm{~b}^{\mathrm{Y}}+1}{\mathrm{~b}^{\mathrm{Y}}-1} \frac{\mathrm{~b}-1}{\mathrm{~b}+1}
\end{align*}
$$

where $\mathrm{H}(\mathrm{T}(\mathrm{b}, \mathrm{Y}))$ is the Shanon's entropy and $\mathrm{E}(\mathrm{T}(\mathrm{b}, \mathrm{Y}))$ is the Onicescu's energy of removal of a vertex from a $T(b, Y)$ tree, when $\mathrm{b}>1$.

For $\mathrm{b}=1$ (path) a entry from Table 1 can help us to obtain the values for $\mathrm{H}(\mathrm{T}(1, \mathrm{Y}))=\mathrm{H}(\mathrm{P}(\mathrm{Y}))$ and $\mathrm{E}(\mathrm{T}(1, \mathrm{Y}))=\mathrm{H}(\mathrm{P}(\mathrm{Y}))$:
$\mathrm{H}(\mathrm{P}(\mathrm{Y}))=-\sum_{\mathrm{k}=1}^{\mathrm{Y}} \frac{2}{2 \mathrm{Y}} \log _{2}\left(\frac{2}{2 \mathrm{Y}}\right)=-\sum_{\mathrm{k}=1}^{\mathrm{Y}} \frac{1}{\mathrm{Y}} \log _{2}\left(\frac{1}{\mathrm{Y}}\right)=\log _{2} \mathrm{Y}$
$E(P(Y))=\sum_{k=1}^{\mathrm{Y}}\left(\frac{2}{2 Y}\right)^{2}=\frac{1}{\mathrm{Y}}$

[^0]: 1991 Mathematics Subject Classification. 05C05 (Trees); 94A17 (Measures of Information, Entropy); 60B99 (Entropy, Energy).

 Key words and phrases. Entropy; Informational Energy; Regular Trees.

[^1]: ${ }^{1}$ Claude E. SHANNON, A Mathematical Theory of Communication, Bell System Technical Journal, 1948, 27:379-423, 623-656.
 ${ }^{2}$ Octav ONICESCU, Energie informationelle, Comptes Rendus de la Academie des Sciences Paris Ser. A, 1966, 263:841-841.
 ${ }^{3}$ E. H. SIMPSON, Measurement of Diversity, Nature 1949, 163(4148):688-688.
 ${ }^{4}$ Sorana D. BOLBOACĂ, Elena M. PICĂ, Claudia V. CIMPOIU, LORENTZ JÄNTSCHI, Statistical Assessment of Solvent Mixture Models Used for Separation of Biological Active Compounds, Molecules, 2008, 13(8):1617-1639.

