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Introduction
Systems occurring in nature are considered the most complex 
systems because they are the result of evolutionary processes 
(15). Nils Aall Barricelli applied evolutionary strategies 
to computer algorithms (5). Three years later, Alex Fraser 
published his first paper on the simulation of the artificial 
selection of organisms with multiple loci controlling a 
measurable trait (24). Fraser’s simulations included all the 
essential elements of modern genetic algorithms.

Evolutionary algorithms are inspired by natural processes 
and are developed in order to optimize difficult or hard 
problems (9). A hard problem is defined as a problem with 
exponential complexity; classical algorithms are not able to 
provide an optimum solution to this kind of problems in real 
time (21).

Two different evolutionary algorithms were introduced 
in the 1970s: genetic algorithms (GAs) (7, 31) and evolution 
strategies (53, 57). Holland investigated the adaptation rather 
than the optimization of hard problems by studying the genetic 
algorithm. He applied the decision theory to the discrete 
domain. In contrast, Rechenberg and Schwefel investigated 
mutation in very small populations in order to optimize 
continuous parameters (53, 57). During the same period, two 
heuristics were introduced for solving hard problems that 
do not require the optimum solution: tabu search (26) and 
simulated annealing (16).

The aim of this study was to show how GAs can be used to 
solve gene hard problems from the field of sequence analysis. 
The following were studied: the classification of hard problems 
in gene sequence analysis; how genetic algorithms work; the 
usefulness of genetic algorithms in sequence alignment; the 
results of the classification of sequence alignments using 
genetic algorithms.

Imposed Problems
Different bioinformatics methods are used to determine the 
biological function and/or structure of genes and of encoded 
proteins. Sequence analysis is an automated computer-based 
method that comprises the following steps (20):

◊	 Sequence alignment: comparison of sequences in terms of 
similarity and dissimilarity;

◊	 Sequence identification: identification of gene-structures, 
reading frames, introns (regions that are not translated 
into proteins), exons (the part of the open reading frame 
that codes a specific portion of the complete protein) and 
regulatory elements;

◊	 Prediction of protein structures;
◊	 Genome mapping;
◊	 Comparisons of homologous sequences for constructing 

the molecular phylogeny.
In chemistry, sequence analysis comprises techniques 

used to determine the sequence of a polymer made of several 
monomers. In molecular biology and genetics this process is 
called “sequencing”.

Multiple Sequence Alignment (MSA) is applied on three 
or more biological sequences (e.g. protein, deoxyribonucleic 
acid (DNA), or ribonucleic acid (RNA). It is assumed that 
the investigated sequences had an evolutionary relationship 
(a common ancestor). The simultaneous alignment of many 
nucleic acids or amino acid sequences is one of the most 
commonly used techniques in sequence analysis.

MSA was performed by using dynamic programming 
methods (49, 64) (no more than three sequences due to the 
computation requirements of the method) (28), heuristics (22, 
62), Carrillor and Lipman Algorithm (12) or its modification 
(45).

Multiple alignments are used to predict the secondary or 
tertiary structure of new sequences (37); to analyze homology 
(60); to construct phylogenetic trees (67), to find protein 
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families (48); and to suggest primers for polymerase chain 
reaction (PCR) (66).

Genetic Algorithm Characteristics
Genetic Algorithms (GAs) are adaptive heuristic search 
algorithms based on the evolutionary ideas of natural selection 
and genetics. GAs are designed to simulate the natural processes 
required for evolution, especially those which follow the “soft 
inheritance” principle of Jean-Baptiste Lamarck (42) and the 
“survival of the fittest” principle of Charles Darwin (15). In 
nature, the individuals’ competition for scanty resources results 
in the fittest individuals dominating over the weaker ones.

Genetic algorithms are implemented as computer simulations 
in which a population of abstract representations (chromosomes 
or genotypes) of candidate solutions (individuals, creatures, or 
phenotypes) is subject to an optimization problem in order for 
better solutions to be obtained. GAs simulate the survival of 
the fittest among consecutive generations of individuals for 
solving a problem. Each generation consists of a population 
of character strings analogous to the DNA chromosomes. Each 
individual represents a point in a search space and a possible 
solution. The individuals in the population evolve. GAs are 
based on an analogy with the genetic structure and behaviour 
of chromosomes within a population of individuals.

There are many variants and adaptations of GAs in 
order to improve performances for a given type of problem. 
The following are examples of using GAs for solving hard 
problems in biological sciences: ant colony optimization (8), 
bacteriologic algorithms (6), the cross-entropy method (18), 
cultural algorithms (40), evolution strategies (58), evolutionary 
programming (23), extremal optimization (2), Gaussian 

adaptation (39), genetic programming (4), memetic algorithm 
(61), hybrid search (17), etc.

A sample of a given size of chromosomes (entry 1 in Table 
1) must be generated in order to use a classical GA for solving 
a problem. A GA must have an evaluation function in order 
to assess chromosome fitness and assign it a value. The GA 
iterates as follows:

◊	 Repeat:
•	 Step1: Select two chromosomes (sometimes 

according to their fitness - better fitness followed by 
better selection chances) by using a probability mass 
function - entry 1, Table 1;

•	 Step2: Crossover the parents by using a probability 
mass function and create offspring - entry 2, Table 1;

•	 Step3: Mutate the offspring by using a probability 
mass function - entry 3, Table 1;

•	 Step4: Add the offspring to the sample;
•	 Step5: Assess the fitness of the new members using 

the evaluation function;
•	 Step6: Delete one or more members from the sample 

based on their fitness by using a probability mass 
function (steady-state selection is applied);

◊	 Until the best fitness of a sample member satisfies the end 
condition.

Encoding, crossover and mutation are presented in Table 1. 
Selection and fitness are shown in Table 2.

Other related approaches include support vector machines 
(10), rough sets (34), SPLASH (11), or probabilistic relational 
models (59).

TABLE 1
Encoding, crossover and mutation in genetic algorithms

Operator Example Comments

Encoding
Chromosome_1 U  A  G  G  A  G

Encode two chromosomes   (U, A, G, C are the genes here)
Chromosome_2 C  G  G  G  A  A  

Crossover
Offspring_1 C  G  G  G  A  G  

Select crossover points (here are 0 and 2) then interchange genes
Offspring_2 U  A  G  G  A  A  

Mutation
Offspring_3 C  G  C  A  A  G

Mutate offspring randomly (A into C and GG into CA)
Offspring_4 U  C  G  G  A  A  

TABLE 2
Fitness and selection in genetic algorithms

Method Fitness score Selection Comments

Proportional
fi=Fitness(Chromosome_i)

pi=fi/Σifi
The chance of reproduction is proportional to the fitness 
(using the probability)

Deterministic i | fi = max. or min. The best or worst individuals are reproduced (elitism)
Tournament (fi,fj) Pairs of individuals compete for selection

Normalization gi=(fi-N0)(fmax.-fmin.)/(N1-N0) pi=gi/Σigi
A fixed scale [N0,N1] normalizes fitness between different 
generations

Ranking hi=Rank(fi)(fmax.-fmin.)/Size pi=hi/Σihi The reproduction chance is proportional to the fitness rank
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As far as sequence analysis is concerned, the objective 
function (a measure of overall alignment quality) is not used 
to demonstrate that one alignment is preferred over another or 
that the best possible alignment, given a set of parameters, was 
found. Therefore, progressive alignment (55), which provides 
two main alternatives, could be used:

◊	 Hidden Markov models (41, 46) simultaneously find 
an alignment and a probability model of substitutions, 
insertions and deletions that are most self consistent;

◊	 Objective functions (OFs) measure multiple alignment 
quality and find the best scoring alignment (19, 27). 
This approach has a further advantage: it may be used to 
optimise any OF. The alignments can be evaluated using 
an OF, which is a measure of multiple alignment quality 
(Table 3).

The OF must deal with the following issues when used to 
solve a gene sequence alignment problem (see Table 3):

◊	 Matches and gaps: two objectives - maximizing matches 
and minimizing gaps. A match may have a different 
biological relevance (weight) than a gap.

◊	 Sequence length: matches (and gaps) increase as sequence 
lengths increase.

◊	 Sequence shifts: shifting of a sequence will produce gaps 
at the beginning and end of the aligned sequences; these 
gaps must be treated separately.

There are many different approaches to constructing an OF. 
Karlin and Altschul (38) presented four types of scores:

1.	 Based on charges: not all amino acids present the same 
partial (or apparent) charge in a given environment (such 
as in blood serum or muscle cells). Charge values may 
be obtained by averaging the values of an experiment; 
alternatively, the pK (or pK-7) value (acid dissociation 
constant) may be used.

2.	 Based on matches of a given amino-acid (e.g. A in Table 3).
3.	 Derived from target frequencies: different weights match 

different amino acids;
4.	 Based on structure alphabets: when amino acids are 

partitioned into classes (such as internal, external and 
ambivalent).

Classical GAs are slightly changed in order to solve a 
specific problem. Thus, Notredame and Higgins (50) reported 
a software package called SAGA (Sequence Alignment by 
Genetic Algorithm) that uses a scheduling scheme to control 
the usage of 22 different operators for combining alignments 

or mutating them between generations. They implemented the 
cost of a multiple alignment (A) as a linear superposition of 
costs between pairs of aligned sub-sequences as OF:

where Wi and Wj are weights of the Ai and Aj sub-sequences 
(in sequences); the Cost(∙,∙) function includes gap opening and 
extension penalties for opening and extending the gaps.

Altschul (1) made an extensive review describing the 
different ways of scoring gaps in a multiple alignment. Two 
related questions derived from sequence alignment:

1.	 Is the alignment significant according to certain statistical 
models?

2.	 How stable is the alignment? (Which are the alternative 
alignments with similar alignment scores?)

The first question is related with the probability of 
observing any particular alignment solely by chance. This 
difficult problem has solutions under certain conditions (65). 
The second question regards alignment interpretation (results 
obtained by Vingron and Argos) (63).

When there is additional information (e.g. the secondary 
structure of one protein from two aligned chains) the complexity 
of the problem decreases. Such alignments include non-local 
interactions and the solution proved to be a hard problem (43). 
Under these conditions, the objective functions must take into 
account this new challenge. Corpet and Michot (14) proposed 
an OF with two position-specific gap penalties: GOS (penalty 
for opening a gap between two stacked pairs); GO (penalty for 
opening a gap in non-structured regions), and GEP (penalty 
for the gap length). Corpet and Michot (14) suggested the 
following predefined weights: GO=5, GOS=8, GEP=0.3, and 
computed the total gap penalty as:

GapP(A)=a(A)∙GOS + b(A)∙GO + c(A)∙GEP
where a is the number of gaps between stacked pairs in 

stems, b is the number of other non-terminal gaps and c is the 
total length of all non-terminal gaps. The alignment score (the 
OF) is calculated as follows:

OF(A) = Pr(A) + λ∙Se(A) - GapP(A)
where Pr(∙) is a function of the aligned pairs of residues in 

the alignment, Se(∙) is based on the secondary structure and it 
evaluates the stability of the folding induced by the master in 
the slave sequence. Parameter λ (positive constant) balances the 
contribution of primary and secondary structure information.

TABLE 3
Example of gene sequence alignment

Two unaligned sequences
Sequence_1 U A A G C C U C A G U A A
Sequence_2 A A C C C U C A U A

A possible alignment of the sequences
Sequence_1 U A A G C C U C A G U A A
Sequence_2 A A C C C U C A U A
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Notredame et al. (50) implemented the model for RNA 
sequence alignment proposed by Corpet and Michot (14) and 
observed that optimization was very difficult for λ>0 (the 
secondary structure was taken into account). Notredame et al. 
(50) reported good results using a Homo sapiens mitochondrion 
(X03205 and V00702) as protein with known structure and 
a mitochondrion from different species (Drosophila virilis 
X05914, Apis mellifera S51650, Penicillium chrysogenum 
L01493, etc.) as protein with unknown secondary structure. 
They showed that the best value for λ parameter varied from 
1 (Oxytrichia nova X03948, Latimeria chalumnae Z21921, 
Xenopus laevis M27605) to 6 (Saccharomyces cerevisiae 
V00702) for the best pair matching resulting from the reference 
alignment that varied from 66.6% to 84.9% in nine experiments 
(with an average statistics of 79.3±4.6% at 95% confidence).

Software Applications
Parsons et al. (52) developed and implemented a genetic 
algorithm for solving a DNA sequence assembly problem. The 
fragments were ordered by using a sorted order representation. 
Two fitness functions based on pairwise overlap strengths were 
implemented and tested. The first fitness function aimed to 
maximize the sum of overlap strengths in adjacent fragments. 
The second fitness function aimed to minimize the function 
described by Churchill et al. (13). The performances of the 
fitness functions were comparable; however, neither function 
appeared to represent the desired layout appropriately. The 
GA implementation suggested by Parsons et al. is a modified 
GA previously implemented by Grefenstettle (30). The 
GA implemented by Parsons et al. was better than the GA 
implemented by Huang (32).

Moore et al. (47) developed and applied a maximum-
likelihood (ML) and Bayesian search using 61 plastid protein-
coding genes on five major lineages of mesangiosperms for 
45 taxa. A genetic algorithm was applied in order to perform 
rapid heuristic ML searches (the GARLI program) (68). For 
Bayesian searches, they used MrBayes 3 program (54) which 
implements a variant of Markov Chain Monte Carlo (MCMC) 
called Metropolis-Coupled MCMC (25). Huelsenbeck et al. 
(33) suggested that the Metropolis-Coupled MCMC was the 
most useful numerical method for approximating the posterior 
probability of a tree. The estimated ML parameters presented 
by Moore et al. (47) were assessed using the nonparametric 
BS approach (3). The phylogenetic tree analysis carried out by 
Moore et al. (47) revealed that GARLI estimated parameters 
were always extremely close to the fully optimized values.

Pan et al. (51) developed GABRIEL (Genetic Analysis 
by Rules Incorporating Expert Logic), which is a rule-based 
system (including similarity, pattern, and proband based rules) 
designed to apply domain-specific and procedural knowledge 
systematically and uniformly in order to analyse and interpret 
data from DNA micro arrays. The effects of serum addition 
on the biology of human fibroblasts (29, 36, 44, 56) were 
used to analyse a dataset of 517 genes. The results revealed 
altered transcription in human foreskin fibroblasts following 

the addition of serum to growth-arrested cultures previously 
published by Iyer et al. (35). Pan et al. (51) used pattern-
based rules to obtain the setting of the following parameters 
(not explicitly defined by Iyer et al.) (35): elevated, baseline, 
immediately, remained, and short period. Pan et al. (51) 
showed that the elevation required at least a 2-fold change 
in the gene expression of each time points, and a baseline 
zone between -1 and +1 (expressed as logarithms). They 
specified the immediate/early (I/E) response gene using a 
decision tree with time periods ranging from 15 min to 1 h 
(51). Pattern search analysis (PSA) was conducted using 
GAs (GABRIEL software) in order to detect data organized 
according to the interrelationships among component parts in 
gene expression profiles (data sets portraying the features of 
gene expression under specified conditions). PSA studies were 
able to reconstruct the results previously reported by Iyer et 
al. (35). Furthermore, when the continuity-proband rule was 
used (GABRIEL), additional continuities not found by Iyer 
et al. (35) were detected through the analysis of hierarchical 
clustering dendrograms. Pan et al. (51) remarked that the GA 
was able to distinguish between expression profiles with subtle 
differences not readily apparent by the visual scanning of data. 
Moreover, in cases where the results differed from the ones 
reported by Iyer et al. (35), the GABRIEL rule explanation 
function indicated the statistical or threshold parameters 
responsible for the differences. Iyer et al. (35) suggests that the 
key features of GABRIEL may be useful for analysing large 
data sets generated by other types of genomic and proteomic 
approaches.

Conclusions
Genetic Algorithms can be implemented in a straightforward 
manner to solve hard problems derived from gene sequence 
analyses (sequence alignment, sequence databases, repeated 
sequence search, sequence comparisons). Recent advances 
in the integration of genetic algorithms with routines for 
maximum-likelihood estimation, Markov chain Monte Carlo 
simulations, and rules incorporating expert logic approaches 
proved able to investigate and explain hard questions of gene 
sequence analysis.
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