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Abstract . There exist graphs of which all detours are Hamiltonian paths. Such graphs are called by Diudea 
(J. Chem. Inf. Comput.  Sci. 1997, 37, 1101-1108) full Hamiltonian detour FHΔ graphs. These graphs show 
the maximal value of the Detour index while the minimal value of the Cluj-Detour index. A selected set of 
cubic graphs on 16 vertices is tested for the distribution of the relative centrality RC values, within the 
Distance, Cluj-Distance and Ring account criteria. The RC distribution test is general and can be used in 
finding the vertex invariant classes and in the characterization of graphs.  
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INTRODUCTION 

 Let G = (V, E) be a connected graph, with no multiple bonds and loops. V is the set of 
vertices and E is the set of edges in G; | ( ) |v V G=  and | ( ) |e E G=  are their cardinalities.  

A walk w is an alternating string of vertices and edges: w1,n = (v1, e1, v2, e2, ..., vn-1, em, 
vn), with the property that any subsequent pair of vertices represent an edge: (vi-1, vi) ∈ E(G). 
Revisiting of vertices and edges is allowed.1-4 

The length of a walk, l(w1,n) =⏐E(w1,n)⏐equals the number of its traversed edges. In 
the above relation E(w1,n) is the edge set of the walk w1,n . The walk is closed if v1 = vn and is 
open otherwise.3,5  

A path p is a walk having all its vertices and edges distinct: vi ≠ vj, (vi-1, vi) ≠ (vj-1, vj) 
for any 1 ≤ i < j ≤ n. As a consequence, revisiting of vertices and edges, as well as branching, 
is prohibited. The length of a path is l(p1,n ) = ⏐E(p1,n)⏐ = ⏐V(p1,n )⏐- 1, with V(p1,n ) being the 
vertex set of the path p1,n . A closed path is a cycle ( i.e., circuit).  

A path is Hamiltonian if all the vertices in G are visited at most once:  n = |V(G)|. If 
such a path is closed, then it is a Hamiltonian circuit.5  

The distance dij, is the length of a shortest path joining vertices vi and vj : 3,5 
 dij = min l(pij);  otherwise dij = ∞. The set of all distances (i.e., geodesics) in G is denoted by 
D(G).  

The detour, δij, is the length of a longest path between vertices vi and vj : 3,5 
 δij = max l( pij);  otherwise δij = ∞.  The set of all detours in G is denoted by Δ(G). 

In this paper we analyses the equivalence classes of the graphs #1 to #8 (Figure 3) by 
using three different measures of relative centrality based on Distance (Table 1), Cluj-
Distance (Table 2) and Ring-count (Table 3) criteria, as follows. 
 

*This paper is dedicated to the 70th anniversary of Professor Padmakar V. Khadikar, 
University of Indore, India. 
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MATERIAL AND METHOD 
 
 TOPOLOGICAL MATRICES AND INDICES 
 
The square arrays that collect the distances and detours, in G are called  the Distance D 

and Detour Δ matrix, respectively: 3,5
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In words, these matrices collect the number of edges separating the vertices i and j on the 
shortest and longest path pi,,j , respectively.  
 The half sum of entries in the Distance and Detour matrices provide the well-known 
Wiener index W 6 and its analogue, the detour number w.7,8 

The Cluj fragments  represent sets of vertices obeying the relation: 3,5,9 
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The entries in the Cluj matrix UCJ are taken, by definition, as the maximum 
cardinality among all such fragments: 

 

  pj,i,
p

CJmax=ji,[UCJ]          (4) 

It is because, in graphs containing rings, more than one path can join the pair (i, j), 
thus resulting more than one fragment related to i (with respect to j and path p).  

The Cluj matrix is defined by using either distance or detour concepts: when path p 
belongs to the set of distances DI(G), the suffix DI is added to the name of matrix, as in 
UCJDI. When path p belongs to the set of detours DE(G), the suffix is DE. When the matrix 
symbol is not followed by a suffix, it is by default DI. The Cluj matrices are defined in any 
graph and, except for some symmetric graphs, are unsymmetric.  
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Figure 1. Cluj matrices in a ring-containing graph G1. 

 



An interesting property appears in UCJDE version;10 let consider the vertices 8 (of 
degree 1) and 5 (of degree 2) of the graph in Figure 1. The vertex 8 is an external vertex (with 
a path ending in it) while the vertex 5 is an internal one. An external vertex, like 8, shows all 
its entries 1 in UCJDE.  

The same entries are shown by the internal vertex 5. This unusual property we called 
the internal ending of all detours intersecting an internal endpoint i in G. 

There exist graphs with all the vertices internal endpoints and their detours are actually 
Hamiltonian paths. Such a graph (an example is given in Figure 2) we call full Hamiltonian 
detour FHΔ graph.10 
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Figure 2. Detour and Cluj Detour matrices of a full Hamiltonian detour FHΔ graph G2. 
 

A FHΔ graph shows all the entries in UCJDE equal to 1 and a minimal value for the 
topological index calculated on this matrix: 
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In FHΔ, the index counts just the number of all vertex pairs, therein joined by 
Hamiltonian detours.  

A related property is shown by the detour matrix.11,12 There exist detour saturated 
graphs, for which the elements of the detour matrix are maximal. It comes out that their 
detour index is maximal among the graphs of the same size:  
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FULL HAMILTONIAN DETOUR (FHΔ) CUBIC GRAPHS 

 Figure 3 illustrates a set of distinct cubic graphs, all of them being full Hamiltonian 
detour graphs, with and w=1800. Note the graph G2 (see Figure 2 ) and #8 
(Figure 3) are isomorphic. To understand this notion, let us consider two graphs G = (V,E) 
and G' = (V',E')  and a function  f, mapping the vertices  of  V onto the vertices belonging to 
the set V',  f : V → V' . That is, the function f makes a one-to-one correspondence between the 
vertices of the two sets. The two graphs are called isomorphic, G ≈ G', if there exists a 
mapping f that preserves adjacency (i.e., if (i,j)∈ E, then (f (i), f (j))∈ E' ). The isomorphism of 
G with itself is called an automorphism. It is demonstrated that all the automorphisms of G 
form a group, Aut(G).3,5 

( ) 120I =UCJDE

In the chemical field, the isomorphism search could answer to the question if two 
molecular graphs represent or not one and the same chemical compound. Two isomorphic 



graphs will show the same topological indices, so that they cannot be distinguished by 
topological descriptors. 

The symmetry of a graph is often called a topological symmetry; it is defined in terms 
of connectivity, as a constitutive principle of molecules and expresses equivalence 
relationships among elements of the graph: vertices, bonds, faces or larger subgraphs.5  
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Figure3. Full Hamiltonian Detour FHΔ  graphs (of degree 3) on 16 vertices,  
with rings from 3 to 7 vertices/atoms. 

 

The topological symmetry5,13 does not fully determine the molecular geometry; it does 
not need to be the same as the molecular point group symmetry. However, it does represent 
the maximal symmetry which the geometrical realization of a given topological structure may 
posses.14 Given a graph G=(V, E) and a group Aut(G),15-17 we call two vertices,  i, j∈V   
equivalent if there is a group element, aut(vi)∈Aut(G), such that j aut(vi) i. The set of all 
vertices j (obeying the equivalence relation) is called i’s class of equivalence. Two vertices i 
and j, showing the same vertex invariant Ini = Inj , belong to the same invariant class IC. The 
process of vertex partitioning in ICs leads to m classes, with v1, v2,...vm vertices in each class. 
Note that invariant-based partitioning may differ from the orbits of automorphism since no 
vertex invariant is known so far to always discriminate two non-equivalent vertices in any 
graph.3,5  
 In this paper we look for equivalence classes of the graphs #1 to #8 (Figure 3), as 
given by using the centrality functions (7, 8): 3,5,18 
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This index allows the finding of the graph center and provides an ordering of the graph 
vertices according to their centrality. It can also be calculated by using the Shell matrices 
ShM instead of LM ones.18  

The entries in the layer matrix (of vertex property) LM, are defined as5,19,20 
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 Layer matrix is a collection of the above defined entries: 

{ },( ) [ ] ; ( ); [0,1,.., ( )]i kG i V G k d= ∈ ∈LM LM G     (10) 

with d(G) being the diameter of the graph (i.e., the largest distance in G). Any atomic/vertex 
property can be considered as pi. More over, any square matrix M can be taken as info matrix, 
i.e., the matrix supplying local/vertex properties as row sum RS, column sum CS. The zero 
column is just the column of vertex properties [ ] ii p=0,LM . When the vertex property is 1 
(i.e., the counting property), the LM matrix will be LC (the Layer matrix of Counting). 

Define the entries in the shell matrix ShM (of pair vertex property) as5,18  
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The shell matrix is a collection of the above defined entries: 
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A shell matrix ShM(G), will partition the entries of the square matrix according to the 
vertex (distance) partitions in the graph. It represents a true decomposition of the property 
collected by the info square matrix according to the contributions brought by pair vertices 
pertaining to shells located at distance k around each vertex. The zero column entries 

are just the diagonal entries in the info matrix. The properties of layer/shell 
matrices LM/ShM have been discussed elsewhere.18-20 
[ ] ,0iShM

In the following, we will focus attention not on the vertex centrality ordering (for this 
subject, the reader is invited to consult our monographs3,5) but to a relative centralily, 
obtained by normalizing with the highest value of centrality function in a graph and next by 
the number of vertices in G:  

/ max( ) ( ) (i iRC C C=LM LM LM      (13) 

( ) ( ) / | ( )ii
RC RC V=∑LM LM G      (14) 

This relative centrality gives account of the deviation to the maximum centrality, 
equaling 1 in case all the vertices are centers of the graph (e.g., the case of simple cycles). 

 
RESULTS AND DISCUSSION 

 
In the present paper, the values of RC for the graphs in Figure 3 are calculated within 

the Distance (Table 1), Cluj-Distance (Table 2) and Ring-count (Table 3) criteria, as follows. 
In the Distance criterion, D matrix is taken as LD (i.e., the row sums in D matrix 

become the zero-column in LM=LD); In the Cluj matrix criterion, the matrix UCJDI 
isoperated by Diudea’s Shell-operator.18  

In the Ring-count criterion, the entries in the layer matrix of rings LR is calculated as: 
 

[ ] , ( )i k kR i=LR        (15) 

with R(i)k is the number of rings of length k passing through vertex i, while the whole LR 
matrix is the collection of these entries, up to a chosen length (an upper bond is v=|V(G)|: 
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Table 1. Relative centrality, local (RCi) and global (RC) values, no. of invariant classes IC and 
their population Pop (no. of vertices) for the graphs #1 to #8; I=C(LD). 

# 1 2 3 4 5 6 7 8 
1 0.6166 1 1 1 0.9993 0.9982 1 1 
2 1 0.6390 0.6381 0.7064 1 1 0.7060 1 
3 0.6166 0.6277 0.7011 0.6915 0.9447 0.6949 0.7061 1 
4 0.6166 0.6277 0.7011 0.6296 0.9447 0.9975 0.9986 1 
5 0.5385 0.6303 0.7018 0.6963 0.9481 1 1 1 
6 0.5385 0.6390 0.7084 0.7064 1 0.9955 1 1 
7 0.6193 0.6277 0.6313 0.6915 0.9447 0.9984 0.7060 1 
8 0.6193 0.6303 0.7080 0.6963 0.9481 0.7025 0.7061 1 
9 0.5385 0.6390 0.7084 0.9990 1 1 0.7060 1 

10 0.5385 0.6277 0.6313 0.6945 0.9447 0.9975 0.9986 1 
11 0.6193 0.6303 0.7018 0.6982 0.9481 0.9809 0.9982 1 
12 0.6193 0.6303 0.7080 0.6929 0.9481 0.9809 0.9982 1 
13 0.5385 0.6277 0.7075 0.6945 0.9447 0.6949 0.7061 1 
14 0.5385 0.6277 0.7075 0.6296 0.9447 0.9984 0.7060 1 
15 0.6193 0.6303 0.6943 0.6929 0.9481 1 1 1 
16 0.6193 0.6303 0.6943 0.6982 0.9481 0.7025 0.7061 1 

Sum 9.7971 10.4647 11.3426 11.6179 15.3564 14.7423 13.6423 16 
RC 0.6123 0.6540 0.7089 0.7261 0.9598 0.9214 0.8526 1
IC 4 4 9 9 4 8 5 1

Pop 1,3,(6)2 1,3,(6)2 (1)2,(2)7 (1)2,(2)7 1,3,(6)2 (1)2,(2)5,4 (2)2,(4)3 16 
 

Table 2. Relative centrality, local(RCi) and global (RC) values, no. of invariant classes IC and 
their population Pop (no. of vertices) for the graphs #1 to #8; I=C(ShUCJDI). 

# 1 2 3 4 5 6 7 8 
1 1 1 1 1 0.9720 0.9836 0.9969 0.9676 
2 0.7512 0.7059 0.7213 0.7560 0.9598 0.9680 0.7725 1 
3 0.7512 0.7239 0.7818 0.7637 1 0.7717 0.7763 0.9863 
4 0.7512 0.7239 0.7818 0.7259 1 0.9829 1 0.9863 
5 0.6659 0.7255 0.7702 0.7652 0.9825 0.9628 0.9969 0.9949 
6 0.6659 0.7059 0.7733 0.7560 0.9598 0.9494 0.9969 1 
7 0.6882 0.7239 0.7368 0.7637 1 0.9613 0.7725 0.9863 
8 0.6882 0.7255 0.7935 0.7652 0.9825 0.7383 0.7763 0.9949 
9 0.6659 0.7059 0.7733 0.9877 0.9598 0.9680 0.7725 1 

10 0.6659 0.7239 0.7368 0.7629 1 0.9829 1 0.9863 
11 0.6882 0.7255 0.7702 0.7952 0.9825 1 0.9992 0.9949 
12 0.6882 0.7255 0.7935 0.7860 0.9825 1 0.9992 0.9949 
13 0.6659 0.7239 0.7780 0.7629 1 0.7717 0.7763 0.9863 
14 0.6659 0.7239 0.7780 0.7259 1 0.9613 0.7725 0.9863 
15 0.6882 0.7255 0.8028 0.7860 0.9825 0.9628 0.9969 0.9949 
16 0.6882 0.7255 0.8028 0.7952 0.9825 0.7383 0.7763 0.9949 

Sum 10.3780 11.8141 12.5939 12.6975 15.7465 14.7033 14.1814 15.8549 
RC 0.6486 0.7384 0.7871 0.7936 0.9842 0.9190 0.8863 0.9909 
IC 4 4 9 9 4 9 5 4 

Pop 1,3,(6)2 1,3,(6)2 (1)2,(2)7 (1)2,(2)7 1,3,(6)2 (1)2,(2)7 (2)2,(4)3 1,3,(6)2 
 



Table 3. Relative centrality, local(RCi) and global (RC) values, no. of invariant classes IC and 
their population Pop (no. of vertices) for the graphs #1 to #8; I=C(LCy). 

# 1 2 3 4 5 6 7 8 
1 1 0.934525 1 0.966019 0.972109 0.964336 1 0.930743
2 0.802226 0.953048 0.996252 0.989216 0.988886 0.936367 0.964186 0.987698
3 1 1 0.958911 0.998263 1 0.994514 0.953163 0.976554
4 1 1 0.958911 0.99658 1 0.987293 0.96221 0.976554
5 0.967995 0.986962 0.942862 0.990571 0.999659 0.970432 0.97435 1
6 0.967995 0.953048 0.96814 0.989216 0.988886 0.923571 1 0.987698
7 0.873761 1 0.973478 0.998263 1 0.942381 0.964186 0.976554
8 0.873761 0.986962 0.916903 0.990571 0.999659 0.955126 0.953163 1
9 0.967995 0.953048 0.96814 0.929073 0.988886 0.936367 0.964186 0.987698
10 0.967995 1 0.973478 0.983684 1 0.987293 0.96221 0.976554
11 0.873761 0.986962 0.942862 1 0.999659 1 0.875436 1
12 0.873761 0.986962 0.916903 0.972476 0.999659 1 0.875436 1
13 0.967995 1 0.991259 0.983684 1 0.994514 0.953163 0.976554
14 0.967995 1 0.991259 0.99658 1 0.942381 0.964186 0.976554
15 0.873761 0.986962 0.970855 0.972476 0.999659 0.970432 0.97435 1
16 0.873761 0.986962 0.970855 1 0.999659 0.955126 0.953163 1

Sum 14.85276 15.71544 15.44107 15.75667 15.93672 15.46013 15.29339 15.75316
RC 0.928298 0.982215 0.965067 0.984792 0.996045 0.966258 0.955837 0.984573
IC 4 4 9 9 4 9 6 4

Pop 1,3,(6)2 1,3,(6)2 (1)2,(2)7 (1)2,(2)7 1,3,(6)2 (1)2,(2)7 (2)4,(4)2 1,3,(6)2 
 

From Table 1, one can see that the graph #8 appears as an “all central vertex” ACV 
graph (like the simple cycles), in the Distance-sum criterion. The more discriminant Cluj 
matrix9 succeeded in separating the invariant classes IC of #8 (Table 2, last column). 
According to the relative centrality global value RC,  #8 remain, by this criterion, the closest 
structure to the ACV status (RC=0.9909), followed by #5 (RC=0.9842).21 

However, changing the criterion to the Ring counting, the largest RC value is shown 
by  #5 (RC=0.9960). If we look for a maximal centrality, different distribution can be seen. 

The invariant classes IC are found the same in the three criteria, excepting those for 
structures #6 to #8. 

Note, the graphs in Figure 3 have been selected (randomly, except #8 and  #2) from a 
large pool of FHΔ, among the possible cubic graphs (i.e., graphs of uniform vertex degree 3) 
on 16 vertices. The study on the whole pool of cubic graphs on 16 vertices, including the 
automorphism group analysis, is in progress at the TOPO Group Cluj and will be published in 
a future article.   

 
CONCLUSIONS 

It was shown that the graphs, with all their detours being Hamiltonian paths, called full 
Hamiltonian detour FHΔ graphs, show the maximal value of the Detour index and the 
minimal value of the Cluj-Detour index. In the set of cubic graphs on 16 vertices herein tested 
for the distribution of the relative centrality RC values, the three criteria: Distance, Cluj-
Distance and Ring account, found the same vertex invariant classes IC, excepting the last 
three structures. The most discriminant appeared the Cluj matrix- and ring-based criteria.   
The RC distribution test is general and can be used in  the characterization of any graphs.  
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