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Abstract. A factor effect study was conducted on a set of observations at the contingency of a 

series of plant species and bacteria species regarding the antibacterial activity of essential oil extracts. 
The study reveals a very good agreement between the observations and the hypothesis of independent 
and multiplicative effect of plant and bacteria species factors on the antibacterial activity. Shaping of 
the observable to a Negative Binomial distribution allowed the separation of two convoluted Gamma 
distributions in the observable further assigned to the distribution of factors. Statistics of the Gamma 
distribution allowed estimating the ratio between diversity of plants factors and bacteria factors in the 
antibacterial activity of essential oils extracts. 
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INTRODUCTION 

 
Recoding the data from an observation may provide different types of outcomes: 

binary, multinomial, or ordinal, if are seen different states of the observed; absolute or relative 
values if a measurement scale or ratio are used; more, the data may come from a discrete or 
continuous pool of possible values and our observation may or may not catch the true or 
whole domain of the observable and some times we can miss even its type. This is the main 
reason for which assumptions are made and statistics are involved to check the assumptions at 
a certain level of confidence. 

Going forward with the observation, experiments are designed in order to collect the 
data in certain imposed conditions allowing us to extract the information regarding the 
observed variable or phenomena. 

Agreement between a model and a series of observations usually implies estimation of 
unknown (unforeseen) parameters about which we may assume that are characteristics of the 
population of whole possible observations from which the sample of observations were drawn 
(Jäntschi 2009). Measuring the agreement between the model and the series of observation is 
a matter of statistics, requires a given specific model and a series of statistical tests, designed 
for general or specific cases give different measures of the agreement, based too on other 
certain assumptions regarding the observed phenomena (Jäntschi & Bolboacă, 2009). The 
most common assumption is the assumption of normality and it comes from the common 
sense that most of the data which we observe are normal distributed, or it comes from 
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populations which are normal distributed. But even in this case a global agreement of all 
statistics involved occurs far less than our expectations and should apply when a conclusion 
regarding the agreement between the observation and the model are drawn (Bolboacă & 
Jäntschi, 2009). 

Not always the measurement and the analysis are conducted by the same people or 
same group of people. In certain cases, the data may suffer alteration processes during the 
way from observation or experiment to analysis. Certain statistics were developed to cover 
this aspect too, and to measure the probability that data may not come from an impartial 
observation (Jäntschi & others, 2009a). 

Certain conditions imposed to the experiment collecting the observation may reshape 
the original distribution of the observed population, and by using distribution analysis is 
possible to obtain this new shape, specifically to the experiment in which the observation 
were made (Jäntschi & others, 2009h). In other cases, subject of observation may provide 
unsymmetrical shape of observed values, giving weight to higher (or lower) values 
disfavouring the opposite case and this fact can be revealed too (Marta & others, 2009). 

Contingency of factors in the observable is one of the most important aspects of 
experimental studies, and may indicate or proof the way in which a process should be 
conducted in order to maximize the outcome (Jäntschi & Bălan, 2009). Field experiments are 
usually conducted in environmental conditions which are not in control of the observer, and 
knowing the inferences coming from changing of these conditions is essential to the 
parsimony of the factors affecting the observable (Bălan & others, 2009). 

Other aspects such as special cases in which values recorded in an ordered outcome 
category based experiment may provide useful knowledge about the corrections which should 
be made on the values associated with the categories (Stoenoiu & others, 2009; Stoenoiu & 
others, 2010). 

Analysing the data regarding the morphology of plants spread in a certain region 
provide knowledge about the effect of adaptation to certain conditions of living plant species 
(Jäntschi & Bolboacă, 2011). Other effects of environmental conditions in which plants 
forced to be adapted can be found from distribution of chemical compounds in plant species 
(Jäntschi & others, 2011). 

The present study takes into the analysis the distribution of the antibacterial activity at 
the contingence between plant species and essential oil extracts of plant species. The aim of 
the study is to reveal how the biological activity is influenced by plant and bacteria species 
and to infer the distribution of biological activity from plant and bacteria species. 
 

MATERIALS AND METHODS 
 

The data regarding the antibacterial activity of essential oils of plants measured as 
inhibition zones by using disc-diffusion method are taken from an experimental study 
(Soković & others, 2007) and are given in Table 1.  

On the data from Table 1 an analysis of independence were conducted using Chi-
square test. The analysis revealed that for P. mirabilis and P. aeruginosa bacteria species the 
hypothesis of independence cannot be accepted (d.f.Plants=9; X2

P.mirabilis=29.1; 
X2

P.aeruginosa=26.2; pχ2(P. mirabilis)<1‰; pχ2(P. aeruginosa)<2‰) and therefore were 
withdrawn from further analysis. 
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Tab. 1 
Antibacterial activity of essential oils plant extracts on bacteria 

 
Plant species Antibacterial activity 

- inhibition zones in mm M.s. M.p. C.l. C.a. M.c. L.a. O.b. S.o. O.v. T.v. 
M. flavus 25 25 19 19 13 22 23 15 35 30 
B. subtilis 24 22 18 18 12 20 22 14 34 28 
S. epidermidis 20 20 14 14 12 18 18 12 30 26 
S. aureus 22 20 16 14 10 18 18 12 32 28 
S. enteritidis 20 20 13 10 9 16 18 10 27 24 
S. typhimurium 18 17 11 8 8 16 16 10 25 20 
E. coli 16 16 12 9 9 14 14 10 26 22 
E. cloacae 14 14 9 9 9 12 12 10 25 22 
L. monocytogenes 16 13 9 8 8 10 11 9 25 18 
P. mirabilis 10 11 0 0 0 7 8 0 22 18 

B
ac

te
ri

a 
sp

ec
ie

s 

P. aeruginosa 10 10 0 0 0 6 8 0 20 16 
M.s.: Mentha spicata; M.p.: Mentha piperita; C.l.: Citrus limon; C.a.: Citrus aurantium; 
M.c.: Matricaria chamommilla; L.a.: Lavandula angustifolia; O.b.: Ocimum basilicum; 

S.o.: Salvia officinalis; O.v.: Origanum vulgare; T.v.: Thymus vulgaris; 
  

Without these two bacteria, the analysis of independence was conducted again, when 
the X2 statistic decreased dramatically (X2(10-1 plants, 11-1 bacteria) = 69.3; X2(10-1 plants, 
9-1 bacteria) = 8.5; p χ2(8.5,72) > 0.9999). 

As can be observed, the data given in Table 1 are integers (millimetres) and then even 
if the true distribution of the observable is not a discrete one, the observed distribution is 
always discrete when we use an instrumentation which has a precision limit of one millimetre. 

For simplicity (an in the mean time for generality), let's note with `m` the number of 
rows - bacteria (m = 9) and with `n` the number of cols - plants (n = 10). Let us recall that the 
expectances under assumption of independence between rows and cols are given by (where 
Oi,j are the observed cell from ith row and jth column in Table 1: 
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Analysis of multiplicative effect of factors under assumption of normal distributed 
observed absolute error (Fisher, 1923; Bolboacă & others, 2011) give the following equation 
relating the "ai" - rows factors and "bj" - cols factors: 
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This equation leads very easy (derivatives should be null in the minimum) to a system 

of equations. Unfortunately, its major disadvantage is that admits infinity (a simple infinity) 
of solutions (i.e. for any fixed a1 has only one solution). Its minor disadvantage is that trying 
to express all other variables depending on one of them (or all depending to a parameter) 
leads to polynomials of degree min(m,n) without simple form in the general case. Thus one 
way in which the solution may be found (only in numerical case) is guessing a starting value 
and iterating directly from the system of equations. 

Since all values are relative to one of them starting values give only one solution (the 
nearest one). We choose to start with ai

0 given by following formula, and then iterate 
repeatedly with (bj

1; ai
1), (bj

2; ai
2), …, until S2 converged: 
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The solution (rows and columns factors) is given in Table 2. 

 
 

RESULTS AND DISCUSSION 

Tab. 2 
Row and column factors in data from Table 1 

 
row(i) 1 2 3 4 5 6 7 8 9  
ai 5.637 5.3042 4.6295 4.832 4.2522 3.7921 3.7769 3.4933 3.2801  
column(j) 1 2 3 4 5 6 7 8 9 10 
bj 4.4859 4.2914 3.1425 2.8649 2.3001 3.766 3.9267 2.6094 6.585 5.5636 

  
A distribution analysis can be conducted on the whole data from Table 1 which passed 

the independence test. By taking into account that the data are integers only, a suitable 
distribution is a discrete one. Table 3 contains the analysis with discrete type distribution 
alternatives. 

 
Tab. 3 

Distribution of the observed antibacterial activity 
 

Distribution Parameters K-S pK-S A-D pA-D C-S pC-S 
Uniform a=6  b=28 0.13043 0.09 22.35 9.7·10-8 19 9.3·10-5 

Geometric p=0.05525 0.40041 2.8·10-13 17.783 6.7·10-7 43 4.3·10-10 

Logarithmic θ=0.98663 0.60571 0 41.427 0 ∞ 0 
Neg. Binomial r=11  p=0.609 0.08675 0.481 0.80817 0.408 1.63 0.443 
Poisson λ=17.1 0.18105 4.7·10-3 10.152 4.8·10-5 15 4.8·10-4 

Bernoulli, Binomial, Hypergeometric: No MLE fit; C-S=ln(1/pK-S)+ln(1/pA-D) 
 

Results given in Table 3 clearly indicate that the distribution of the antibacterial 
activity of essential oils extracts among bacteria is of negative binomial type. A mathematical 
analysis of the negative binomial distribution allows explaining of this fact. Thus, a simple 
math gives: 
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The previous formula shows that the negative binomial distribution may arise as a 

continuous mixture of Poisson distributions where the mixing distribution of the Poisson rate 
is a gamma distribution. Thus, under these assumption that it should be behind of this 
distribution a mixture of Poisson and Gamma distributions, between parameters should be the 
previous proofed formula. Indeed, the data behave this property. Any row and any column 
agree with a certain Poisson distribution (Tab. 4). 
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Tab. 4 
Poisson shaping of the observed series of data 

 
Species Data MLE λ pK-S pA-D C-S pC-S 

M.flavus 25; 25; 19; 19; 13; 22; 23; 15; 35; 30 -33.354 22.6 0.96235 0.51167 0.708 0.7017 
B.subtilis 24; 22; 18; 18; 12; 20; 22; 14; 34; 28 -33.054 21.2 0.97719 0.54082 0.638 0.7270 
S.epidermidis 20; 20; 14; 14; 12; 18; 18; 12; 30; 26 -31.866 18.4 0.65898 0.40743 1.315 0.5182 
S.aureus 22; 20; 16; 14; 10; 18; 18; 12; 32; 28 -34.557 19.0 0.84516 0.33102 1.274 0.5289 
S.enteritidis 20; 20; 13; 10; 9; 16; 18; 10; 27; 24 -33.470 16.7 0.51709 0.20678 2.236 0.3270 
S.typhimurium 18; 17; 11; 8; 8; 16; 16; 10; 25; 20 -31.897 14.9 0.37285 0.27307 2.285 0.3191 
E.coli 16; 16; 12; 9; 9; 14; 14; 10; 26; 22 -31.350 14.8 0.884 0.3888 1.068 0.5863 
E.cloacae 14; 14; 9; 9; 9; 12; 12; 10; 25; 22 -31.372 13.6 0.74308 0.21328 1.842 0.3981 
L.monocytogenes 16; 13; 9; 8; 8; 10; 11; 9; 25; 18 -31.259 12.7 0.63353 0.27459 1.749 0.4171 
M.s. 25; 24; 20; 22; 20; 18; 16; 14; 16 -24.538 19.444 0.93832 0.70654 0.411 0.8142 
M.p. 25; 22; 20; 20; 20; 17; 16; 14; 13 -24.633 18.556 0.59374 0.67567 0.913 0.6334 
C.l. 19; 18; 14; 16; 13; 11; 12; 9; 9 -23.817 13.444 0.98545 0.71802 0.346 0.8412 
C.a. 19; 18; 14; 14; 10; 8; 9; 9; 8 -25.167 12.111 0.69926 0.37978 1.326 0.5153 
M.c. 13; 12; 12; 10; 9; 8; 9; 9; 8 -20.013 10 0.21701 0.32018 2.667 0.2636 
L.a. 22; 20; 18; 18; 16; 16; 14; 12; 10 -24.412 16.222 0.74614 0.71089 0.634 0.7283 
O.b. 23; 22; 18; 18; 18; 16; 14; 12; 11 -24.965 16.889 0.69564 0.66245 0.775 0.6788 
S.o. 15; 14; 12; 12; 10; 10; 10; 10; 9 -20.654 11.333 0.28949 0.3188 2.383 0.3038 
O.v. 35; 34; 30; 32; 27; 25; 26; 25; 25 -25.626 28.778 0.41834 0.50869 1.547 0.4613 
T.v. 30; 28; 26; 28; 24; 20; 22; 22; 18 -25.333 24.222 0.9651 0.6874 0.410 0.8145 

C-S=ln(1/pK-S)+ln(1/pA-D); Σln(1/pC-S)=12.3; pC-S-"Poisson" = 0.8741 
 

Tab. 5 
Maximum Likelihood Estimation (MLE) of Poisson parameters of species from Table 4 

 

Hypothesis 
∂LE/∂r= 
∂LE/∂p=0 

r 
(Natural) 

p(∂LE/ 
∂p=0) 

p/ 
(1-p) 

MLE pK-S pA-D pC-S C-S pC-S 

λA ~ Gamma(r,p/(1-p)) r=14.127; p=0.547 10 0.631 1.710 -55.801 0.993 0.833 0.917 0.276 0.964 
  11 0.609 1.555 -55.561 0.997 0.878 0.948 0.187 0.980 
  12 0.588 1.425 -55.401 0.999 0.902 0.974 0.130 0.988 
  13 0.568 1.315 -55.310 0.999 0.909 0.865 0.241 0.971 
  14 0.550 1.221 -55.277 0.998 0.901 0.846 0.273 0.965 
  15 0.533 1.140 -55.293 0.990 0.880 0.490 0.851 0.837 

λP ~ Gamma(r,p/(1-p)) r=9.788; p=0.636 9 0.655 1.900 -30.843 0.995 0.853 0.869 0.304 0.959 
  10 0.631 1.710 -30.826 0.984 0.827 0.886 0.327 0.955 
  11 0.609 1.555 -30.862 0.961 0.788 0.901 0.382 0.944 
  12 0.588 1.425 -30.940 0.929 0.740 0.912 0.467 0.926 
  13 0.568 1.315 -31.054 0.890 0.685 0.923 0.575 0.902 
  14 0.550 1.221 -31.198 0.846 0.627 0.932 0.704 0.872 

λB ~ Gamma(r,p/(1-p)) r=28.309; p=0.377 27 0.388 0.633 -23.176 0.882 0.814 - 0.331 0.847 
  28 0.379 0.611 -23.171 0.857 0.802 - 0.375 0.829 
  29 0.371 0.590 -23.172 0.837 0.788 - 0.416 0.812 
  30 0.363 0.570 -23.179 0.822 0.775 - 0.451 0.798 
  31 0.356 0.522 -23.190 0.650 0.507 - 1.110 0.574 
  32 0.348 0.534 -23.207 0.789 0.742 - 0.535 0.765 
  10 0.631 1.710 -24.975 0.722 0.591 - 0.852 0.653 
  11 0.609 1.555 -24.699 0.793 0.638 - 0.681 0.711 
  12 0.588 1.425 -24.461 0.850 0.679 - 0.550 0.760 
  13 0.568 1.315 -24.256 0.896 0.715 - 0.445 0.800 
  14 0.550 1.221 -24.079 0.931 0.747 - 0.363 0.834 

 
Results obtained so far show that two parts out of three results directly from the 

analysis of the distribution of observed data (Negative Binomial distribution of the whole 
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pool of independent data; Poisson distribution of the series of independent data). More, let's 
note that with the data from Table 4, Average(λ) for Bacteria is 17.1000 and Average(λ) for 
Plants is 17.0999. It remains only that Poisson parameters of the series to be Gamma 
distributed. Indeed, results given in Table 5 proof this fact. 

Table 5 give more than one alternative (for different integer values of r) for every 
series of data (all species, e.g. λA; plant species, e.g. λP; bacteria species, e.g. λB) but only one 
corresponds to maximum value of the likelihood (the ones in bold face). The reason is that 
none of them is regardless to the hypothesis of dependence, because were proofed previously 
that it exists a coverage distribution - the Negative Binomial distribution. In order to select the 
most probable values of the parameters, a similar procedure should be conducted on the 
Negative Binomial distribution and their results are given in Table 6. 

 
Tab. 6 

Different likelihood estimates for Negative Binomial distribution parameters of species 
 

Hypothesis r p p/(1-p) (M)LE pK-S pA-D pC-S C-S pC-S 
Obs ~ NegBin(r,p) 9 0.655 1.900 -293.474 0.410 0.366 - 1.897 0.387 

 10 0.631 1.710 -293.137 0.461 0.398 - 1.696 0.428 
 11 0.609 1.555 -293.001 0.453 0.395 - 1.721 0.423 
 12 0.588 1.425 -293.008 0.444 0.372 - 1.801 0.406 
 13 0.568 1.315 -293.120 0.436 0.337 - 1.918 0.383 
 14 0.550 1.221 -293.310 0.428 0.297 - 2.063 0.357 
 27 0.388 0.633 -297.695 0.164 0.035 - 5.160 0.076 
 28 0.379 0.611 -298.034 0.153 0.030 - 5.384 0.068 
 29 0.371 0.590 -298.366 0.141 0.026 - 5.609 0.061 
 30 0.363 0.570 -298.692 0.131 0.023 - 5.805 0.055 
 31 0.356 0.522 -299.013 0.122 0.020 - 6.016 0.049 
 32 0.348 0.534 -299.322 0.113 0.018 - 6.198 0.045 

(M): estimate of p remains the same, and thus (r,p) pair is a MLE estimate for the given r 
  
 

An important remark opens a discussion here. Thus at least one out of the two 
individual series - the Bacteria series - is rejected to provide reasonable likelihood estimates 
from its Poisson parameters (Tab. 6, r from 27 to 32, MLE estimate of r from λB being 28). 
This fact excludes the opposite alternative from symmetry reasons - accepting just one 
alternative it means that the homogeneity hypothesis should be rejected too, which is not an 
acceptable result, because were proofed previously that the independence hypothesis cannot 
be rejected and test of independence is equivalent with test of homogeneity when Chi-Square 
test are involved, and it were involved. It remains that both individual series should be 
rejected from the simultaneous agreement Obs~NegBin(r,p) and λB or P~Gamma(r,p/(1/p)). 

Even more, a simple calculus of the MLE estimates of p from λ ~Gamma(rB,pB/(1-pB)) 
and λ ~Gamma(rP,pP/(1-pP)) -values in Table 5 -gives pB+pP=0.379+0.631=1.01~1.00 which 
is more than a coincidence, because the data behind λB and λP estimates are not independent 
(are the same) and thus the relationship pB+pP=1.0 should be considered when estimates of the 
rB and rP are made. Consequential, the estimates from λA~Gamma(rA,pA/(1-pA)) and 
Obs~NegBin(r,p) should be linked together, and indeed, the values of pA, rA and their 
associated statistics from Table 5 and the values of p and r and their associated statistics from 
Table 6 sustain this hypothesis. The Table 7 contains the estimates using these relationships. 
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Tab. 7 
Estimates under association 

λA ~ Gamma(rA,pA/(1-pA)), Obs ~ NegBin(rA,pA) 
 

∂LE/∂rA=∂LE/∂pA=0 
Natural r; best alternative: 
MLE 

NegBin(rA,pA) 
Gamma(rA,pA/(1-
pA) 

Global 

rA pA pA/(1-
pA) 

MLE rA pA pA/(1-
pA) 

MLE pK-S pA-D pK-S pA-D pC-S C-
S 

pC-S 

12 0.588 1.425 -348.409 0.467 0.381 0.999 0.902 0.974 1.9 0.869 12.349 0.581 1.385 -348.399 
13 0.568 1.315 -348.430 0.430 0.334 0.999 0.909 0.865 2.2 0.823 

q=pBP/(1-pBP); λB ~ Gamma(rB,q), λP ~ Gamma(rP,1/q) 
 

∂LE/∂rB=∂LE/∂rP=∂LE/∂pBP=0 Natural r; "best": MLE Gamma(rB,q)) Gamma(rP, 1/q) Global 
rB rP pBP MLE rB rP p MLE pK-S pA-D pK-S pA-D pC-S C-S pC-S 

29 10 0.370 -54.001 0.861 0.790 0.989 0.832 0.877 0.71 0.982 
30 10 0.365 -54.029 0.952 0.798 0.768 0.764 - 0.81 0.937 
29 11 0.377 -54.322 0.736 0.580 0.644 0.707 - 1.64 0.802 

29.103 10.030 0.370 -54.000 

30 11 0.371 -54.599 0.628 0.447 0.556 0.634 - 2.31 0.678 

 
 

Interpreting results given in Table 7, is no reason to reject the hypotheses that between 
Gamma distribution parameters of Poisson estimates of the antibacterial activities and 
Negative Binomial distribution of the observables it exists the relationship given by the 
convolution of the Poisson distribution and Gamma distribution: 
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0 A
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AAAAA d)

p1

p
,r;(Gamma);x(Poisson)p,r;x(NegBin λ

−
λ⋅λ= ∫

∞

 

and the Gamma distribution probably occurs and characterize the interaction between these 
two types of organisms: plants and bacteria. 

On another hand, the relationship between proportions from Gamma distribution of 
the Poisson parameters of the bacteria and plant series of data clearly indicate that the two 
factors - "bacteria factor" and "plant factor" in antibacterial activity has multiplicative and 
complementary effect and the separation of factors given in Table 2 has statistical 
sustainability. This fact opens the path to construct population factors of bacteria and plants at 
contingency of effects in antibacterial activity. More than that, the convolution of the two 
distributions, Poisson and Gamma strongly suggests that the Gamma distribution occurs due 
to the continuous effect of factors (as values from Tab. 1 are). Next table contains the 
parameters of the Gamma distributions of the population factors. 

 
Tab. 8 

Distributions of the population factors for plants and bacteria on antibacterial activity 
 

Population Distribution r q q/(1-q) MLE pK-S pA-D pC-S C-S pC-S h1[·] 
Bacteria ai ~ Gamma(rB,qB/(1-qB)) 31.663 0.120 0.137 -10.323 0.816 0.792 - 0.44 0.804 1.148 
Plants bj ~ Gamma(rP,qP/(1-qP)) 10.082 0.282 0.392 -16.043 0.993 0.852 0.898 0.27 0.965 1.604 

 
 

Following figures depicts the population factors distribution of plants (FP) and of 
bacteria (FB) and the true distribution of the antibacterial activity as convolution of these two 
(AA). Let's note that the convolution of two Gamma distributions only in very rare cases has a 
close form (expressed by a explicit distribution function) and here is not the case. It only may 
approximated with another Gamma distribution. 
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Fig. 1. Distribution of factors (Plant and Bacteria) in observed Antibacterial activity of essential oil extracts 
 
As can be seen from the above figure, interesting extracted information is that the 

bacteria have a more slim distribution than the plants have. More, all three distributions are 
asymmetrical with more weight to low values (low effects, low interactions are more often 
between them). 

CONCLUSIONS 
 

The analysis of factors conducted in this study on antibacterial activity of essential oils 
extracts from a series of plants on a series of bacteria revealed that the Negative Binomial 
distribution of the antibacterial activity is a mixture (convolution) of Poisson and Gamma 
distributions from which only Gamma distribution can (and should) be assigned to plant and 
bacteria factors expressed in the antibacterial activity. Decomposition of factors under the 
multiplicative effect revealed a very good agreement between observed and expected values 
(probability of wrong model less than 0.001). Shaping of the Gamma distribution of the 
factors (on a relative scale) revealed that low factor values are often than high ones (left 
weighting of both factors distributions). The differential entropy (which is directly linked with 
population diversity) of plant factors are 40% higher than the differential entropy of bacteria, 
giving an estimate of over 50% higher diversity of plant factors than bacteria factors. 
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