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Abstract. A series of ten plant species belonging to Magnoliopsida - Dicotyledons class were 

analyzed in terms of chemical compounds distribution of abundance, starting from the assumption that 

these distributions should give a picture of similarities and differences between plants metabolism. 
From a pool of theoretical distributions, log-normal distribution was selected giving the best accuracy 

with the modeled phenomena and agreement with the observed data. From obtained lognormal 

distributions statistics a classification were constructed and were compared with the classification 
based on phylogeny. 
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INTRODUCTION 

 

There are many studies regarding the plants classification and phylogeny, starting 

basically from two approaches: the morphology based one (Grime et al., 1997), and from 

molecular based one (Sonnhammer et al., 1997). 

Analysis of statistical distributions may provide useful evidences for plants evolution. 

According to (Fay and Wu, 2000), frequency distribution of variation can be influenced by a 

number of evolutionary processes, an excess of derived variants at high frequency is a unique 

pattern produced by hitchhiking.  

The distribution analysis extends their application in recent years, from (Reed et al., 

1985) to ecological modeling of natural structures assemblages (Tsirtsis and Spatharis, 2011) 

and morphologic parts modeling (Alarcon and Sassenrath, 2011). 

The present study propose another approach for plants classification and kinship, 

based on similarities on distribution of chemical compounds, which should be related to 

plants metabolism. 

 

MATERIAL 

 

Data reported in (Kozioł and Macía, 1998) and (Soković et al., 2007) were included 

into analysis. Table 1 contains the values of compounds abundances (as were reported) sorted 

descending for ten different species. 
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Tab 1. 
Compounds abundances (percent values) for ten different species 

 

Series Compounds abundances (count) USDA Label (Species name) [Ref] 

Ob% 69.25; 2.56; 2.48; 2.38; 2.10; 1.87; 1.66; 1.42; 1.13; 1.11; 1.05; 1.02; 0.91; 0.82; 0.82; 0.63; 0.58; 0.56; 

0.51; 0.46; 0.43; 0.43; 0.39; 0.38; 0.31; 0.30; 0.30; 0.27; 0.19; 0.12; 0.11; 0.10; 0.09; 0.06; 0.06; 0.05 (36) 

OCBA (Ocimum basilicum) [8] 

Sp% 38.99; 18.51; 6.95; 3.07; 1.30; 1.29; 1.19; 0.89; 0.88; 0.76; 0.66; 0.55; 0.52; 0.49; 0.47; 0.45; 0.40; 0.26; 

0.22; 0.21; 0.20; 0.19; 0.12; 0.11; 0.08; 0.07; 0.05; 0.04; 0.03 (29) SPPU (Spondias purpurea) [7] 

Mp% 37.40; 17.37; 12.70; 6.85; 6.82; 5.59; 2.52; 1.29; 1.23; 0.81; 0.79; 0.69; 0.50; 0.48; 0.47; 0.41; 0.29; 0.28; 

0.19; 0.17; 0.17; 0.13; 0.13; 0.12; 0.10; 0.10 (26) MEPI (Mentha piperita) [8] 

Ms% 49.52; 21.92; 5.77; 3.06; 2.28; 1.36; 1.27; 0.99; 0.71; 0.71; 0.68; 0.57; 0.52; 0.49; 0.49; 0.48; 0.45; 0.40; 

0.33; 0.31; 0.30; 0.26; 0.22; 0.07 (24) MESP3 (Mentha spicata) [8] 

Tv% 48.92; 18.99; 4.08; 3.45; 3.45; 2.23; 1.78; 1.73; 1.72; 1.30; 1.21; 1.17; 1.06; 0.83; 0.76; 0.74; 0.65; 0.58; 

0.46; 0.41; 0.33; 0.30; 0.17; 0.16 (24) THVU (Thymus vulgaris) [8] 

So% 31.65; 16.67; 8.70; 6.90; 4.77; 4.61; 3.41; 3.03; 2.64; 2.56; 2.20; 1.74; 1.09; 0.99; 0.37; 0.35; 0.30; 0.29; 

0.14; 0.12; 0.11; 0.07; 0.03 (23) SAOF2 (Salvia officinalis) [8] 

Mc% 43.47; 9.09; 8.50; 8.48; 6.06; 5.62; 5.21; 1.92; 1.65; 0.39; 0.38; 0.35; 0.35; 0.32; 0.29; 0.16; 0.15; 0.12; 

0.10; 0.08 (20) MARE6 (Matricaria chamomilla) [8] 

La% 27.54; 27.21; 8.50; 6.54; 4.20; 3.34; 2.95; 2.51; 2.44; 2.09; 2.02; 1.07; 0.59; 0.58; 0.25; 0.19; 0.16; 0.09; 

0.06; 0.04 (20) LAAN81 (Lavandula angustifolia) [8] 

Cl% 59.68; 17.25; 11.21; 2.85; 1.72; 1.29; 0.87; 0.84; 0.64; 0.55; 0.44; 0.39; 0.29; 0.27; 0.21; 0.17; 0.13 (17) 
CILI5 (Citrus limon) [8] 

Ov% 64.50; 10.90; 10.80; 3.50; 2.50; 2.20; 2.20; 1.90 (8) ORVU (Origanum vulgare) [8] 

Refs: [7] - (Kozioł and Macía, 1998); [8] - (Soković et al., 2007) 

 

METHODS 

 

It should be noticed that always the sum of percentage values given in Table 1 does 

not exceed 100%; more than that, never the sum of values does not give 100%, always being 

something undetermined (unknown compounds or compounds with abundance below the 

detection limit of the instrumentation). Thus, the assumption of independence between the 

percentage values is sustained. 

Nerveless, it may be dependence between the occurrences or abundance of certain 

compounds, given by the intrinsic biological processes through these compounds was 

synthesized in plants. In fact, the main issue addressed with our analysis addresses exactly 

this intrinsic dependence. 

Let us assume that we will observe the river flow frequency distribution (by defining a 

constant time step interval). Then we may observe that flows follow a log-Pearson Type 3 

distribution (Khan, 2009). We may found also that log-Pearson Type 3 distribution is the 

guideline recommended distribution when we deal with water flows (US Water Resources 

Council, 1967). But these values of flood flow are indeed independent one to each other? Or 

after a period when flood flow are high, are expected a long period with low flood flows, and 

this is the main reason for which log-Pearson Type 3 distribution fits very well? This is a very 

good example on how the intrinsic relationship between observable values is propagated to 

the distribution type. Same reasoning stays at the basis of discovery and usage of any other 

distribution, that the distribution extracts the mimic existing in our sampled data and provides 

the shape of the population based on this mimic. For example, when different people made 

same measurements of same observable in same place at same moment, regardless the type of 

the observable and regardless of the type of the instrumentation involved, the only one 

assumption which we can made is that their measurements should follow a symmetrical 

distribution, because is equiprobable to make an error observing less or observing more. If we 

http://plants.usda.gov/java/profile?symbol=OCBA
http://plants.usda.gov/java/profile?symbol=SPPU
http://plants.usda.gov/java/profile?symbol=MEPI
http://plants.usda.gov/java/profile?symbol=MESP3
http://plants.usda.gov/java/profile?symbol=THVU
http://plants.usda.gov/java/profile?symbol=SAOF2
http://plants.usda.gov/java/profile?symbol=MARE6
http://plants.usda.gov/java/profile?symbol=LAAN81
http://plants.usda.gov/java/profile?symbol=CILI5
http://plants.usda.gov/java/profile?symbol=ORVU
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know more about the measurement procedure, such as were made on a absolute or relative 

scale, were made using an instrumentation or only a hand tool, observation results were 

recorded on a continuous (or close to continuous) or a discrete scale, on a ordinal or category 

based scale), are a finite or a infinite number of possible observations, so on, then we are able 

to narrow the pool of possible theoretical distributions of the observable results to a short list 

of probable distributions. 

Regarding this last statement, that knowing more about the type of measurement 

involved we may narrow the pool of possible distributions to a short list of probable 

distributions, this are based on evidences too. There are two types of evidences which may 

come: from theoretical considerations of the phenomena involved, when we arise again to our 

previous example of flood flow frequencies, or from experimental considerations, when a 

great number of independent observations suggesting same conclusion. In one way or another, 

when we arisen to a conclusion we transfer the knowledge from applications to theory or vice 

versa. 

The data from Table 1 were obtained in one case only (one sampling) from the entire 

population of species individuals and the true values of the abundances may be different in 

samples than in population from which the samples were drawn. More than that, for every 

analyzed compound, its abundance in population is not identical from one individual to 

another, and it has variability, and it follows a distribution characterized by a mean (true value 

of the abundance in population) and a standard deviation. The idea is to explore the 

distribution of the abundances of the compounds in these different species (observed 

distributions, and then the distributions will be sampling distributions of abundances) and to 

extract useful information which may be true in general, for every chemical analysis of any 

species. 

 

RESULTS 

 

 A pool of over 50 theoretical distributions were narrowed to a short list of 16 

possible distributions for the populations of chemical compounds abundances in species from 

Tab. 1, based on "have fit with observed values" and having probability to come from the 

theoretical distribution greater than 1% when one of Kolmogorov-Smirnov (K-S) - 

(Kolmogorov, 1941; Smirnov, 1948), Anderson-Darling (A-D) - (Anderson and Darling, 

1952), and Chi-Square (C-S) - (Pearson, 1900; Fisher, 1922a; Fisher, 1924) statistics were 

applied to measure the agreement between observations and theoretical distributions of which 

parameters were determined using Maximum Likelihood Estimation (MLE) - (Fisher, 1912; 

Fisher, 1925) method. 

 These distributions are: Dagum (3 Parameters), Frechet (2P), Frechet (3P), Fisher-

Tippett (3P), Inverse Gaussian (2P), Inverse Gaussian (3P), Levy (1P), Levy (2P), Log-

Logistic (2P), Lognormal (2P), Pareto 2, Pearson 5 (2P), Pearson 5 (3P), Pearson 6 (3P), 

Phased Bi-Exponential (4P), Weibull (2P). K-S, A-D and C-S statistics and associated 

probabilities (that samples come from the theoretical distributions) are given in Tab. 2. Since 

every statistics measures the departure between the observation and the model using different 

approaches, a global measure of likelihood were calculated for a given Probability Density 

Function expression by using the formula proposed in (Fisher, 1948) - F-C-S column in Tab. 

2. 

Two distributions were removed from further analysis at this step (Dagum - 3P and 

Inverse Gaussian - 2P - see Table 2) due to their unacceptable probability of observation (pF-C-

S column in Tab. 2). 
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Tab. 2 
Measuring agreement between observations and theoretical distributions 

 

Dist C-S pC-S K-S pK-S A-D pA-D F-C-S pF-C-S ΣCDF0 ΣCDF100 Rank 

Dagum_3P 16.48 0.0574 17.74 0.0595 28.11 0.0017 12.04 0.0073* *rejected at this stage 15 

Frechet_2P 5.51 0.7874 6.27 0.7918 7.29 0.6974 0.83 0.8416 0 0.183 13 

Frechet_3P 2.73 0.9742 3.17 0.9771 4.59 0.9166 0.14 0.9871 0.0018 0.302 5 

FisherTippett_3P 6.80 0.6576 7.33 0.6941 9.53 0.4831 1.51 0.6795 0.7922 0.035 10 

InverseGaussian_2P 28.50 0.0008 27.92 0.0019 44.26 0.0000 26.17 0.0000* *rejected at this stage 16 

InverseGaussian_3P 3.05 0.9625 7.58 0.6694 7.41 0.6863 0.82 0.8456 0.0117 0.061 12 

Levy_1P 11.89 0.2196 14.28 0.1606 12.26 0.2679 4.66 0.1983 0 0.562 7 

Levy_2P 4.38 0.8849 8.86 0.5458 8.26 0.6031 1.23 0.7450 0.0033 0.438 11 

LogLogistic_2P 2.69 0.9754 4.60 0.9162 6.72 0.7514 0.40 0.9406 0 0.085 2 

Lognormal_2P 5.50 0.7887 6.88 0.7364 7.69 0.6589 0.96 0.8108 0 0.033 1 

Pareto2_2P 6.07 0.7325 5.14 0.8816 7.40 0.6869 0.81 0.8464 0 0.108 3 

Pearson5_2P 4.81 0.8504 6.17 0.8004 6.97 0.7279 0.70 0.8726 0 0.237 9 

Pearson 5_3P 3.37 0.9479 5.11 0.8837 17.53 0.0634 2.94 0.4016 0.0015 0.373 6 

Pearson6_3P 3.93 0.9158 2.88 0.9841 4.67 0.9118 0.20 0.9782 0 0.111 4 

PhasedBiExponential_4P 3.44 0.9442 6.30 0.7895 17.20 0.0701 2.95 0.3993 0.0000 0.060 8 

Weibull_2P 13.21 0.1533 6.10 0.8070 18.02 0.0546 5.00 0.1720* *rejected at this stage 14 

 

The data comes from measurements of percentages, and thus may vary from 0(%) to 

100(%) and is essential that the theoretical distributions to reflect this fact as best as possible 

(if is possible via domain of the theoretical distribution, or at least based on cumulative 

probabilities in these critical points). Addressing this issue, cumulative probabilities for X≤0 

(ΣCDF0 in Tab. 2, as sums from all 10 samples) and for X≥100 (ΣCDF100 in Table 2, as 

sums from all 10 samples) were calculated. When the distribution domain is strictly positive 

by definition a value of "0" were reported in CDF0 column of Tab. 2, or "0.00" or greater 

otherwise. The distributions were ranked (Rank column in Tab. 2) on ΣCDF0 as first criterion 

(ascending order, with "0.000" > "0"), ΣCDF100 as second criterion (ascending order, "0.000" 

> "0" were not necessary to be applied), and pF-C-S (descending order - were not necessary to 

be applied). 

It should be noticed that any of these criteria are not absolute and nor the ranking is. 

Nevertheless, it should be noticed too that the ranks from pF-C-S are reversed for first two pole 

positions (Log-Logistic and Log-Normal). This is an expected result. Both distributions 

compete for same pool of observed data, as other authors also recently observed (Dey and 

Kundu, 2010). 

More, log-logistic distribution is more tailed than the log-normal. With a kurtosis of 

4.2, the standard logistic distribution has a longer tail than the normal, which has kurtosis 3.0; 

differences in the upper quantiles of normal and logistic are further magnified when they are 

exponentiated to get log-normal and log-logistic distributions (Modarres et al., 2002). Our 

results shown this aspect (ΣCDF100 is 0.033 for log-normal and 0.085 for log-logistic under 

disfavor of log-logistic distribution) - we don't want a distribution to predict much outside of 

the true domain of the possible data. 

Once the log-normal distribution were selected from the pool of the possible 

distributions, a good idea is to check if the joined pool of data from all species may come 

from same log-normal distribution. It is a reasoning to check this. Because all species also 

come from same or different genus, same or different family, same or different order (so on), 

we may and must assume that a certain level of phylogeny our conclusion regarding the 

distribution of compounds abundances should be verified (remaining the same). 

This hypothesis were verified and proved to be true. The pool of 227 observations 
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(considered drawn from Magnoliopsida - Dicotyledons class of Magnoliophyta - Flowering 

plants division). Joined pool of 227 observations has a 23.5% probability to be drawn from 

lognormal distribution according to K-S statistic, 20.4% probability according to A-D, 31.9% 

probability according to C-S, a value of 4.18 for F-C-S, and a probability of 24.3% to be 

drawn from lognormal distribution according to Fisher's method of combining independent 

tests of significance (calculated as probability from C-S distribution to observe -ln(0.235)-

ln(0.204)-ln(0.319) with three degrees of freedom). 

Once again, is no reason to reject the hypothesis of lognormal distribution of the data 

of compounds abundances sampled from biological organisms! 

The parameters of the obtained distributions are given in Tab. 3. 

 
Tab.3 

Distributions of the populations of compounds abundances 

 
Label Lognormal distribution parameters Mean StDev lnSk lnKE FI H.5 H1 H2 H3 

ORVU Lognormal(x;1.1515; 1.6653) 10.3 17.1 2.26 5.84 .754 3.37 3.23 2.74 2.59 

CILI5 Lognormal(x;1.6676; 0.00927) 4.05 15.8 4.26 11.3 .360 3.02 1.94 1.09 0.79 

LAAN81 Lognormal(x;1.842; -0.02378) 5.33 28.6 5.14 13.6 .295 3.13 2.01 1.00 0.65 

MARE6 Lognormal(x;1.8645; 0.1644) 6.70 37.5 5.26 14.0 .288 3.25 2.21 1.18 0.82 

SAOF2 Lognormal(x;1.8178; 0.09447) 5.74 29.4 5.01 13.3 .303 3.19 2.11 1.13 0.78 

THVU Lognormal(x;1.4238; -0.16437) 2.34 6.00 3.20 8.38 .493 2.63 1.61 0.95 0.71 

MESP3 Lognormal(x;1.3062; 0.18882) 2.84 6.02 2.77 7.20 .586 2.77 1.87 1.30 1.08 

MEPI Lognormal(x;1.7061; -0.24783) 3.35 13.9 4.44 11.8 .344 2.88 1.71 0.82 0.51 

SPPU Lognormal(x;1.6655; -0.75731) 1.88 7.27 4.25 11.2 .361 2.46 1.17 0.33 0.02 

OCBA Lognormal(x;1.3718; -0.60725) 1.40 3.29 3.01 7.84 .531 2.17 1.13 0.50 0.28 

Magnoliopsida Lognormal(x;1.6744; -0.13751) 3.54 13.9 4.29 11.3 .357 2.93 1.80 0.94 0.64 

Legend: LnSk - ln(Skewness); lnKE – ln(Kurtosis Excess); FI - Fisher's information; Hα - Renyi's Entropies 
 

 

DISCUSSION 

 

Fig. 1 depicts in logarithmic scale on both axes the log-normal distributions of 

compounds abundances for investigated species, and Fig. 2 depicts their classification. 

The Fig. 1 were obtained by using the classification data from Cronquist system 

(Cronquist, 1981) by using different encodings for different values of classifiers. On the 

tabulated data for the 10 samples of species were applied the cluster analysis method using 

single linkage based on Euclidian distances. By using the same classification method as were 

used to obtain Fig. 2 by using now the results given in Tab. 3 for chemical compounds 

abundance distributions, another classification were obtained, and is given in Fig. 3. 

Fig. 1 shows a wide variety of abundances. Practically every species seems to be 

specialized in its own way in synthesizing chemicals. Let us note that even if we can see very 

good associations in terms of distribution of chemical compounds in Fig. 1 (as between 

SAOF2 - Salvia officinalis and SPPU - Spondias purpurea) there are great differences 

between these (for example SAOF2 and SPPU belongs to different subclasses - see Fig. 2). It 

is a simple reasoning too seen this: distribution of the compounds abundances give only one 

component from the whole picture of relatives; another component is for example the 

structures or the belonging classes of compounds synthesized - and this component should be 

somehow orthogonal on the component of compounds distribution and giving thus a 

completely different picture of relatives. 

http://plants.usda.gov/java/ClassificationServlet?source=display&classid=Magnoliopsida
http://plants.usda.gov/java/profile?symbol=SAOF2
http://plants.usda.gov/java/profile?symbol=SPPU
http://plants.usda.gov/java/profile?symbol=SAOF2
http://plants.usda.gov/java/profile?symbol=SPPU
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Fig. 1. Chemical compounds abundances for ten species 

Legend: MARE6 - Matricaria chamomilla; LAAN81 - Lavandula angustifolia; SAOF2 - Salvia officinalis; 

SPPU - Spondias purpurea; MEPI - Mentha piperita; CILI5 - Citrus limon; OCBA - Ocimum basilicum; MESP3 

- Mentha spicata; THVU - Thymus vulgaris; ORVU - Origanum vulgare 
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Fig. 2. Investigated species - classification using taxonomic characters of phylogenetics importance 

 

Even further, the classification based on taxonomic characters of phylogenetics 

importance and the classification based on chemical compounds abundances distribution has 

http://plants.usda.gov/java/profile?symbol=MARE6
http://plants.usda.gov/java/profile?symbol=LAAN81
http://plants.usda.gov/java/profile?symbol=SAOF2
http://plants.usda.gov/java/profile?symbol=SPPU
http://plants.usda.gov/java/profile?symbol=MEPI
http://plants.usda.gov/java/profile?symbol=CILI5
http://plants.usda.gov/java/profile?symbol=OCBA
http://plants.usda.gov/java/profile?symbol=MESP3
http://plants.usda.gov/java/profile?symbol=THVU
http://plants.usda.gov/java/profile?symbol=ORVU
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no obvious association relationship (as can be seen from the two classifications depicted in 

Fig. 2 and Fig. 3). 
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Fig. 3. Investigated species - classification using chemicals abundances distribution statistics 

 

 The main reasoning for this should be found in the meaning behind of the data from 

which the classification was made. Thus, if taxonomic characters give a picture about 

phylogeny, on the opposite, compounds distribution give a picture about metabolism. 

 

CONCLUSIONS 

 

Distribution of chemical compounds was used to classify 10 species according to their 

relatives on the relative ratios of synthesized chemical compounds. 

The study showed that with a very high likelihood distribution of chemical compounds 

in plant species follow a log-normal distribution. Distribution remains the same if in place of 

a species are placed a plant class, and this fact suggests that splitting of the plants into classes, 

subclasses, orders, families, genus and species is consistent with plant metabolism too. 

Anyway, classification based on distribution of chemical components give a totally 

different picture of relatives than the phylogeny based classification, suggesting that the 

classification based on distribution of chemical components is only one component (of great 

importance for plant species characterization) - the one relating the plant metabolism - from 

the whole pool of components which gives relatives based on phylogeny, and another 

component of great importance for plant species characterization should be constructed from 

chemical compounds similarities. 
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