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Abstract. The distribution of the molecules by their kinetic energy is treated from statistical point of view. 

Boltzmann's formula for the distribution of the molecules by energy was found as a limit case of digamma 

function. Maxwell's formula for the ideal monoatomic gas was derived directly from Boltzmann's main result 

without employing other sketch formulas. The analytical formulas for two speeds - one real and the other 

virtual - of molecules were obtained for the case when the molecules carry the kinetic energy in more than 

three independent components, like in polyatomic molecules. Analysis of the generalized distribution function 

of the molecules by their virtual speeds indicated that certain molecular states the reach a highest mode in the 

distribution of the molecules by their virtual speed for a deterministic value of the energy components. 
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DISTRIBUTION OF THE MOLECULES BY ENERGY AND ITS LIMIT APPROXIMATION 

 

For a system with N undistinguishable particles and K energy states, the chance (or 

probability, pj) of any molecule to fall in a certain (1 ≤ j ≤ K) energy state (Boltzmann, 1868) leads, 

at observational level, to a multinomial distribution. Thus the chance to see a certain distribution 

(N1, …, NK) is (eq.1): 
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At equilibrium, the observation of the system with the arrangement (N1, …, NK) should 

come from maximum likelihood (Fisher, 1912) and thus the maximum likelihood estimation is 

applied (Eq.2): 
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For a closed system, the Eq.2 is under two constrains (N = Σ1≤j≤KNK and E = Σ1≤j≤KεjNj, 

where εj is the distinct kinetic energy of the j state) and the solutions of Eq.2 are solutions of eq.3. 

Eq.3 is according to Lagrange multiplier's method (Lagrange, 1811) an associated unconstrained 

equation (with two more unknowns): 
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The derivatives of MLE1 function - Eq.3 - provide the relationships between the energy of 

a certain level and its population (Eq.4): 
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The obtained equations are not simple at all, involving the digamma (Ψ) function (Eq.5): 

iii

i

i )pln()1N(
)1N(

)1N(





 (5) 

In (Eq.5) two unknown are present due to constraining of the system to be closed: α and β, 

but these values are common for any value of i (1 ≤ i ≤ K). 

By using the Euler's famous relationship (Euler, 1781) for large numbers of molecules (Ni 

>> 1) a convergence relationship between digamma function and logarithm can be written (Eq.6): 
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and an analytical solution can be extracted. Thus if (Eq.6) is used as approximation, then by 

embedding the Ψ(1) into α, the Eq.5 becomes: 
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It should be noted that using the approximation for large numbers, the expression for the 

proportion (Ni/N) of the particles possessing certain kinetic energy (εi) depend only in one unknown 

(Eq.8): 
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The formula from Eq.8 was derived in the assumption that each energy state does not 

possess any internal structure, which may influence the random falling of the molecule in the state. 

By replacing pi from Eq.8 and N from Eq.7 in Eq.1 (replacing in Eq.2 or Eq.3 provides the 

same result): 
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Experiments with ideal gas allow identification of the constant β while experiments with 

mixing of pure substances allow the identification of the constant α (Gibbs, 1902): kBT = -1/β, kBT 

= -μ/α, μ being the chemical potential. 

By making N = ct. and T = ct. in the last expression of Eq.9, the change in the energy is: 
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By constraining even more the system with V = ct. the last term vanishes (is an extensive 

property volume dependent) and allows extraction of the entropy: 
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Similarly, for S = ct. along with V = ct. and T = ct. gives the chemical potential (μ): 
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Definition of the entropy from reversible processes and the first principle allows finally 

giving a more convenient expression for a change in energy: 

dE = T·dS - p·dV + μN·dN (9d) 

 

IDEAL GAS 

 

For an ideal gas, the total internal energy has three components, corresponding each to a 

translation in one direction in space. Even more, the pj/pi ratio is not significantly different from 1, 

and thus for each of its components the assumptions used to derive (eq.8) holds as a limit case - the 

value of a speed component (for instance vx) takes any value from (-∞, ∞) interval, and fraction of 

the molecules possessing a certain speed is the probability for the speed. In the (Eq.10) are one 

unknown constant (β) and one non-evaluated integral, which are constant too, which allows 

rewriting with two unknown constants: 














x

v
2

m

v
2

m

x

dve

e
)v(f

2
x

2
x

 → 
2

xbv

x ae)v(f


  
(10) 

One constant from the expression of f in Eq.10 results from the condition that f is a 

probability density function (Eq.11): 
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From Eq.11, an expression for the mean of one component of the energy can be obtained 

(Eq.12): 
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For the identification of the constant a, a relationship between the energy and state 

parameters must be derived. In the ideal gas, all energy is from translation of the molecules and has 

three components, corresponding to the degrees of freedom (ε = εx + εy + εz). Even more, for each 

arbitrary value, of an energy component (such as εx = m·vx
2
/2), the molecules possessing a speed of 

vx and the molecules possessing a speed of -vx are in equal number. 

Considering a box of volume V and a wall of the box of surface S parallel to yOz plane in 

a timeframe of δt, the molecules that may hit the wall are at a distance of vx·δt by the wall. Their 

density (δNx/δV) in this volume (S·vx·δt) is equal to the density (N/V) from the entire box (V). 

Considering that only half of them (δNx/2 = (S·vx·δt)·(N/V)/2) have the orientation of the speed 

component vx to the wall, the impulse transferred to the wall (Eq.13) is calculated as the sum of the 

impulses transferred by every molecule (2·m·vx). This impulses create an instantaneous force acting 

on the wall (δFx = δPx/δt) as well as an instantaneous pressure (δpx = δFx/S). Since Eq.13 stands for 

any arbitrary value of the speed component vx it is also stands when the averages are applied in both 

parts of the equality (Eq.14). But M(px) is in fact the observed pressure on the wall (p = M(px)). 

δPx = (2·m·vx)·(δNx/2) = m·S·N·vx
2
·δt/V 

δFx = δPx/δt = m·S·N·vx
2
/V 

(13) 
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δpx = N·m·vx
2
/V 

p = M(δpx) = 2·N·M(m·vx
2
/2)/V = 2·N·M(εx)/V → M(εx) = p·V/(2·N) (14) 

By using relations given by Eq.12 and Eq.14, results the expression for the constant a 

(Eq.15): 
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In order to obtain the distribution of the molecules by its value of the speed it should recall 

first the Eq.12: 
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To simplify the formula, the constant expressed as a it will be kept. As given in Eq.16, in 

every moment of time, speed on the direction of the translation is related with its components by v
2
 

= vx
2
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2
 + vz

2
. There are no constrictions regarding the value of one component of the speed (vx) 

in relation with the value of the others (vy and vz), which it means that these three components acts 

independently one vs. each other. The event to see a particle with the v value for the speed in the 

direction of the translation (φ and θ give the direction of the translation) is a dependent event, 

depending by the independent events for the components of speed possessing the values |vx|, |vy| and 

|vz| and (Eq.17): 
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Using the Jacobian (1841) for vx = vsin(θ)cos(φ), vy = vsin(θ)sin(φ), vz= vcos(θ), the 

function g(v,φ,θ) can be obtained (Eq.18) from Eq.11: 
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The event to see a particle with the v value in any direction of the translation (Eq.18) 

results from integration of g for all directions (Eq.19). Please note that if vx, vy and vz takes only 

positive values (as takes |vx|, |vy| and |vz|) then the angles φ and θ takes values in [0,
π
/2] interval: 
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An expression for the mean of the kinetic energy can be obtained (Eq.20) from Eq.19: 
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Turning back to Eq.12, through Eq.20, it could be shown that (Eq.21): 
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The Eq.21 is a proof for the echipartition of the kinetic energy on its components (Eq.22) 

since the chosen component (εx) was arbitrary: 

M(ε)/3 = M(εx) = M(εy) = M(εz) (22) 
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KINETIC ENERGY OF GAS MOLECULES WITH AN ARBITRARY NUMBER OF ENERGY 

COMPONENTS 

 

It has already been proof that one component of the energy for the ideal monoatomic gas is 

given by Eq.11 with the constants identified in Eq.15: 
2
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For an unknown gas with J components of the total energy, 3 of these components come 

from translation movement, as come for the ideal monoatomic gas. The other components of the 

energy may be stored in rotation and vibration of the molecules whenever the molecule is build 

from more than one atom. 

However, the real speed of the molecules, as can be recorded from translation, it can be 

decomposed in its three Cartesian components (v
2
 = vx

2
 + vy

2
 + vz

2
), still have only three degrees of 

freedom, and is computed from averaging the velocity from three of its components (the translation 

ones). Therefore, this speed is with disregard to the number of energy components and is defined by 

Eq.24: 

  













0

zyxzyx

2

z

2

y

2

x dv)v(hvdvdvdv)v(f)v(f)v(fvvv)v(M  

  mN

pV8

mN

pV2

1

2

a

12

a2

1
a4dveva4)v(M

4

3

0

va33 22













 



  

(24) 

In the next, it could be noted that the decomposition of the kinetic energy in J components 

(more than three) also defines other speed (let's label with s), a virtual speed, as energetic equivalent 

of all types of movement (including rotation and translation) (Eq.25). 
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For an arbitrary gas with J components of the kinetic energy, there is no reason to suspect 

that the energy are distributed different on other energy components than is on the three components 

of translation (a part of the energy is stored in the rotation and possibly in the vibration as well). 

Even more, for some types of movement (such as rotation and translation) an instantaneous speed 

has sense. If Eq.23 express the distribution of one component of the energy then the mean energy 

can be computed from Eq.26:  
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Furthermore, the virtual speed (Eq.27) is harder to compute: 
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As is defined by (Eq.25) M(s) defines a virtual speed (s) because it has no sense to use 

more than three independent directions of movement of a body in a physical space. 

 

VIRTUAL SPEED OF GAS MOLECULES WITH AN ARBITRARY NUMBER OF KINETIC 

ENERGY COMPONENTS 

 

In order to compute the integral defined by Eq.27, the variables must be change in a 

multidimensional sphere. This transformation can be conducted similarly with the transformation of 

the three-dimensional case (Eq.17-18). Thus, changing of the integrals limits from (-∞,∞) to [0,∞) in 

Eq.27, will multiply by 3 each kinetic energy component (Eq.28): 
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The proper method to change the variable must be applied first. Like in both 2- and 3-

dimensional cases, the positive values of all virtual speed components will determine that the 

integration domain for angular variables to be [0, 
π
/2]. 

An iterative (with increasing of J) changing of the variables can be defined as is given in 

Tab. 1. If the variables are changed accordingly, then the Jacobian is easily computable and reveals 

an iterative formula too (see Tab.1). 

 
Tab.1 

Change of the variables from Cartesian to polar and the Jacobian of the change 
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s5 = q0·sin(q1)·sin(q2)·sin(q3)·sin(q4) 

)qsin()q(sin)q(sinq
dqdqdqdqdq

dsdsdsdsds
32

2

1

34

0

43210

54321   

J 

s1 = q0·cos(q1) 

… 

sJ-1 = q0·sin(q1)·…·sin(qJ-2)·cos(qJ-1) 

sJ = q0·sin(q1)·…·sin(qJ-2)·sin(qJ-1) 











2J

1k

k

1kJ1J

0

1J0

J1 )q(sinq
dq...dq

ds...ds  

 

The second task is to evaluate the integrals of the angular coordinates (q1, …, qJ-1) and this 

procedure is illustrated in Tab.2. For simplification, the variables from q1 to qJ-1 are renamed in the 

expression of the Jacobian in a reversed order, and the integrals are given only for the new occurring 

expressions. 

The distribution of the molecules by its virtual speeds (Eq.29) could be written as: 

22saJ1J

1J

2/J

eas
)2J(2

)s(PDF 







  (29) 

To evaluate the integrals given in Eq.26 and Eq.27 is the last task (Eq.30): 














0

sa1J
J2/J

0

2J2 dses
)2J(

a2
ds)s(PDFs2)s(M

22

 














0

saJ
J2/J

0

J dses
)2J(

a2
ds)s(PDFs2)s(M

22

 

(30) 

To accomplish this last task, the formula presented in Eq.31 should be used: 

1n

0

sqn

q2

)212n(
dses

22





 
  with  aq  (31) 

and the expressions of mean square (M(s
2
)) and mean (M(s)) virtual speeds becomes (Eq.32): 

15



 

pV2

mN1
a


  

mN

pV
J

a

1

)2J(

)12J(

a2

)12J(

)2J(

a2
)s(M

212/J2J

J2/J
2 
















 

mN

pV2

)2J(

)212J(

a

1

)2J(

)212J(

a2

)212J(

)2J(

a2
)s(M

2/12/12/J1J

J2/J
















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
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(32) 

 
Tab.2 

Integrals on [0, 
π
/2] for all angles for the Jacobian of changed coordinates 

 
J Jacobian Integrals on [0, 

π
/2] for all angles 

2 0q  
2

dq1
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1






 

3 )qsin(q 2
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3
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0
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
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J Generalized formula 
)2J(22

dq)q(sin
2J
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






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



 
 

 

A remark can be made about the obtained result (Eq.33): 

  0
)2J(

2)212J(
Jlim

mN

pV
)s(M)s(Mlim

J

2

J






















 (33) 

and thus with the increasing of the number of the components of the energy (at very high 

temperatures or for very large molecules) both measures of virtual speed become equal. 

Tab.3 exemplifies the values of the squared root of mean square virtual speed (M(s
2
)) and 

mean virtual speed (M(s)) for some values of J. 

If we turn back (Eq.29) to the distribution of the molecules by their virtual speed (Eq.34): 

22saJ1J

1J

2/J

eas
)2J(2

)J,a,s(PDF 







  (34) 

the above equation indicate that for certain states (a in Eq.34) the distribution of the molecules by 

their virtual speeds have a high mode (Eq.35): 

)J,a,s(PDF
s

0



  → 

a

1J
s


 , 2/J

12/J3

2/12/J2/J1

a
)2/J(2

)1J(e
)J,a,

a

1J
(PDF 











 to max. (35) 

and if it exists, we should call these states as 'preferred state'. 
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Tab.3 

Differences between virtual speeds for different number of kinetic energy components 
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


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THE NUMBER OF ENERGY COMPONENTS FOR HYDROGEN MOLECULES 

 

The advantage of introducing the number of energy components for which Eq.29 provides 

the distribution of the virtual speeds of the molecules is obvious when we go back to the 

experimental data. By using the experimental data from (Debye, 1912; Johnson et al., 1950; Smith 

et al., 1954; Chase, 1998), as well as the definition of the constant-pressure heat capacity (Cp = 

(∂H/∂T)p=ct, H = E + p·V) the number of the energy components (J) for hydrogen can be derived 

from the experimental data (Cp,m = (J+2)·R/2) as a smooth curve, as it is depicted in Fig. 1. 

 

 

Fig. 1. Energy components for hydrogen 
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