
Inside of the Linear Relation between Dependent and Independent Variables 
 
Lorentz JÄNTSCHI1,2,3, Lavinia L. PRUTEANU2, Alina C. COZMA3,4, Sorana D. BOLBOACĂ4,* 

 
1 Technical University of Cluj-Napoca, Department of Physics and Chemistry, Muncii Bvd. 103-
105, 400641 Cluj-Napoca, Romania. E-mail: lorentz.jantschi@gmail.com 
2 Babeş-Bolyai University, Institute for Doctoral Studies, Kogălniceanu Street no. 1,400084 Cluj-
Napoca, Romania 
3 University of Oradea, Department of Chemistry, Universităţii Street no. 1, 410087 Oradea, 
Romania. E-mail: acozma@uoradea.ro  
4 Iuliu Haţieganu University of Medicine and Pharmacy, Department of Medical Informatics and 
Biostatistics, Louis Pasteur Street no. 6, 400349 Cluj-Napoca, Romania. E-mail: 
sbolboaca@umfcluj.ro 
 
* Corresponding author: Sorana D. Bolboacă. E-mail: sbolboaca@umfcluj.ro; Phone: 
+40750774506 
 
Abstract 
Simple and multiple linear regression analysis are statistical methods used to investigate the link 
between activity/property of active compounds and the structural chemical characteristics. The 
linear regression models assume a normal distribution of the errors and the analysis is correctly 
conducted when this assumption is verified. The paper introduces a new approach of solving the 
simple linear regression without making any assumptions about the distribution of the errors. The 
proposed approach maximizes the probability of observing the event according to the random error. 
The use of the proposed approach is illustrated on ten classes of compounds with different activity 
or property. The proposed method proved reliable and showed to fit properly the observed data 
compared to the convenient approach of normal distribution of the errors.  
 
Keywords: maximum likelihood estimate (MLE); simple linear regression (SLR); regression 
parameter; robust approach 
 
 
Introduction 
The quantitative structure activity/property relationships (QSAR/QSPR) are computational 
techniques that quantitatively relates chemical feature (such as descriptors) to a biological activity 
or property [1]. Linear regression is one of the earliest method [2] used to link the activity/property 
with structural information and is frequently used due to the easiness interpretation [3]. Linear 
regression is misuse due to the application without investigation of its assumptions (such as 
linearity, independence of the errors, normality, homoscedasticity, and absence of multicolinearity 
[4]). 
The error, “a measure of the estimated difference between the observed or calculated value of a 
quantity and its true value” [5], was first used in mathematics/statistics in 1726 in Astronomiae 
physicae & geometricae elementa (Oxford, 1702; 2nd ed., Geneva, 1726; English title The Elements 
of Physical and Geometrical Astronomy – London, 1715, 2nd ed., 1726). In the late 1800’s, Adcock 
[6,7] suggested that the errors must pass through the centroid of the data. The method proposed by 
Adcock, named orthogonal regression, explore the distance between a point and the line in a 
perpendicular direction to the line [6,7]. Kummel [8] investigated other than perpendicular 
directions between the points and line. Galton described in 1894 the regression slope ('r') based on 
an experiment of sweet pea seeds [9]. Two years later, Pearson generalized the errors in the variable 
and published a rigorous description of correlation and regression analysis [10] (Pearson recognized 
the contribution of Bravais [11] to the mathematical formula for correlation). Due to the ability to 
produced best linear unbiased parameters [12], the coefficients in simple linear regression (SLR) 
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model are usually estimated by minimizing the sum of squared deviations (least squares estimation, 
method introduced by Legendre in 1805 [13], and used/applied by Gauss in 1809 [14]). Fisher has 
introduced the concept of maximum likelihood within linear models [15,16]. 
The generic equation of simple linear regression (Eq1) between observed dependent variable Y and 
observed independent variable X is: 

Y ~ Ŷ = a·X + b                               (1) 
where a and b are unknown constant values (estimators of statistics parameters of simple linear 
regression), Ŷ is the value of the dependent variable estimated by the model, Y is the observed value 
of dependent variable, X is the observed value of the predictor variable.  
The array use to estimate the residuals is given by (Yi-a·Xi-b)q formula, where i is the ith 
observation in the sample (1 ≤ i ≤ n, when n = sample size), and q is an unknown coefficient. The 
unknown q parameter is an estimator, the power of the errors on simple linear regression.  
In the general case, residuals (Si=Yi-aXi-b, where S = residual) follow the Gauss-Laplace 
distribution with μ, σ and p unknown statistical parameters: 
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where μ = population mean, σ = population standard deviation, q = power of the errors, and Γ = 
gamma function, s = sample standard deviation. 
Gauss-Laplace distribution is symmetrical, has three statistical parameters (population mean, 
population standard deviation, and power of the errors) [14,17] and two main particular cases. First 
particular case is Gauss distribution [14] often observed on arrays of biochemical data [18,19,20] 
while the second particular case is Laplace distribution (with mean of zero and variance σ2) [21,22] 
commonly seen on astrophysical data [23,24].  
The problem of estimating the parameters of the SLR (Eq1) for the first particular case (Gauss 
distribution) consider q = 2 residuals (power of the errors related with experimental errors). The 
simplest ways to obtain the coefficients of regression for this particular case is by solving the 
system of linear equations under the assumption that ΣSi

2 = min. [25] (ΣSi
2 = Σ(Yi-a·Xi-b)2, where a 

and b are unknown parameters). 
Another particular case is q = 1 when residuals follows the Laplace distribution. In view of the fact 
that Σ|Si| = Σ|Yi-a·Xi-b| is ‘is not differentiable everywhere’ [26], the solution in more difficult to be 
obtain for this particular case. 
One question that can be ask is “what is the proper value of q that should be used in the simple 
linear regression analysis (Eq1)?”.  A previously published study showed that for different sets of 
biological active compounds, the distribution of the dependent variable (Y) can be approximated by 
Gauss distribution (q = 2) just in a relatively small number of cases when the whole Gauss-Laplace 
distribution family is investigated [27]. Based on this result, the aim of the present study was to 
formulate the problem of solving the simple linear regression equation (Eq1) without making any 
assumptions about the power of the errors (q). 
 
2. Material and Methods 
2.1. Mathematical approach 
The problem of regression (Eq1) is transformed into a problem of estimation if the residuals Si = Yi-
a·Xi-b are introduced in Eq2 with a slight modification: in the quantity (Yi-a·Xi-b)-μ the constants b 
and μ are equivalent, and just one (b) will be further used. Gauss-Laplace distribution is 
symmetrical and the observed mean is an unbiased estimator of the population mean (μ = b). This 
could be expressed in terms of Eq1 as presented in Eq3: 

M(Y) ~ M(Ŷ) = a·M(X) + b                          (3) 
where b is the population mean of the Gauss-Laplace quantity Y-a·X (Eq2), Y = observed / 
measured dependent variable, Ŷ = dependent variable estimated by the regression model, X = 



independent/predictor variable, M = mean operator. For certain arrays of paired observations (X,Y), 
the problem of regression expressed in Eq1 is transformed in a problem of estimating the 
parameters of the bi-dimensional Gauss-Laplace distribution as presented in Eq4: 
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An efficient instrument to solve the estimation problem presented in Eq4 is maximum likelihood 
estimation (MLE), method proposed by Fisher [15,16]. The main assumption of the MLE is that the 
(X,Y) array has been observed due to its higher chance to be observed (simultaneously and 
independent). This could be translated as ΠGL(Xi,Yi;σ,q,a,b) = max., thus 
log(ΠGL(Xi,Yi;σ,q,a,b))=max., which led to the expression in Eq5: 

Σlog(GL(Xi,Yi;σ,q,a,b)) = max.                        (5) 
By including Eq4 in Eq5 and using the natural logarithm, the problem presented in Eq1 became a 
problem of optimization (Eq6): 
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where N = number of (X,Y) pairs.  
The optimization problem presented in Eq5 could be solved iteratively if the start point is a good 
initial solution (situated near the optimal solution). In this research, the start point in the 
optimization was the solution of a particular case of Eq6 as presented in Eq7 (): 

q = 2;  
a = (M(XY)-M(X)·M(Y))/D2(X)                    (7) 
μ = M(Y)-a·M(X) 
σ = (D2(Y)-(M(XY)-M(X)·M(Y))2/D2(X))1/2 

where q = power of the errors, μ = population mean, σ = population standard deviation, M = average 
(central tendency operator), D2 = variance (dispersion operator). 
 
2.2. Data sets 
Ten classes of previously investigated compounds were used as input data in our analysis. The class 
of compounds, the activity/property of interest along the number of compounds in the set and the 
reference to the paper from where the descriptors were collected are given in Table 1. 
 

Table 1. Characteristics of the investigated classes of compounds 
Set n Class Activity/Property – expressed as Ref 
1a 35 
1b 126 
1c 250 

phenols toxicity on Tetrahymena pyriformis  – log(1/IGC50) [28,29,30]

2 24 organic compounds Solubility – logP [31,32] 
3 73 alkanes Boiling point – BP [33] 
4a 40 Solubility – logP 
4b 30 

flavonoids 
Lethal Dose 50% – ln(LD50) 

[34] 

5 132 estrogen receptor (ER) binding affinities – log(RBA) [35] 
6 80 pyrrolo-pyrimidine derivatives c-Src Tyrosine Kinase inhibitory activity – pIC50 = - log10 (IC50) [36] 
7 47 substituted aromatic sulfonamides inhibition activity on carbonic anhydrase II – logKI [37] 
8 37 carboquinone derivatives molar concentration – log(1/MC) [38] 
9 47 dipeptides ACE (angiotensin converting enzyme) inhibitory activity – ACE [39] 
10 60 mycotoxins compounds retention time – ln(RT) [40] 
 



Simple linear regression models under the assumption of linear relationship between structural 
descriptors and activity/property of active compounds were identified starting with the values of 
descriptors previously published in the literature. The models with highest goodness-of-fit for each 
class of compounds are presented in Table 2. 
 

Table 2. Characteristics of sets used in the optimization study 
Set SLR model R2 s F n 

1a log(1/IGC50) = + 0.677·logP - 1.38 0.90 0.22 287 35 
1b log(1/IGC50) = + 0.647·logP - 1.05 0.84 0.30 666 126 
1c log(1/IGC50) = - 0.443·logP + 0.509 0.53 0.57 276 250 
2 logP = - 0.004·ISDRTHg* + 2.09  0.53 0.43 25 24 
3 BP = + 188.40·lbMdsHg* - 507.95  0.99 3.81 8050 73 

4a logP = + 0.99998·SD + 5.232 0.71 0.32 92 40 
4b ln(LD50) = + 0.0018·SD - 61.168 0.41 0.98 19 30 

5 logRBA = + 0.026·TIC1 - 4.145 0.36 1.44 72 132 
6 pIC50 = + 0.255·DCW - 1.216 0.71 0.57 191 80 
7 logKI = -0.578·N-rings + 2.646 0.49 0.37 43 47 
8 log(1/MC) = -4.129·TEuIFFDL* + 5.789 0.65 0.38 64 37 
9 ACE = 47.5480·IHMdpMg* - 0.1687 0.74 0.33 128 47 

10 ln(RT) = 0.348·logP + 1.711 0.56 0.50 75 60 
SLR = simple linear regression;  
log(1/IGC50) = concentrations (expressed as mM) producing a 50% growth inhibition on T. pyriformis;  
* MDF descriptors [32, 38, 39, 41] 
SD = global correlation descriptor [34]; 
TIC1 = total information content index (neighborhood symmetry of 1-order); 
DCW = flexible (activity dependent) descriptor;  
std_dim3 = the square root of the third largest eigenvalue of the covariance matrix of the atomic coordinates [42] 
R2 = determination coefficient; s = standard error of the estimate; 
F = Fisher’s statistic of the regression model; n = sample size 

 
3. Algorithm implementation 
An object was created to solve the problem: 
class ERegression{ 
 function DCopy(&x,&y); //initialize with data 
 function DStat(); //do the analysis 
 function m01(&z); //compute the average of the array 
 function m02(&z,&w); //compute the average of the arrays product 
 function GLMLE(&it); //calculate MLE of GL for given parameters 
 function Steps(); //iterates the convergence to the optimal parameters 
 function ERegression(&u,&v){DCopy(u,v); DStat();} //constructor of the object 
} 
function ERegression.m01(&z){s=0.0;for(i=0;i<m;i++)s+=z[i];s/=m; return(s);} 
function ERegression.m02(&z,&w){s=0.0;for(i=0;i<m;i++)s+=z[i]*w[i];s/=m; return(s);} 
function ERegression.DCopy(&u,&v){y=&u;x=&v;m=count(y);} 
function ERegression.DStat(){ 
  my1=m01(y);my2=m02(y,y);dy2=my2-pow(my1,2); 
  mx1=m01(x);mx2=m02(x,x);dx2=mx2-pow(mx1,2); 
  mxy=m02(x,y);cxy=mxy-mx1*my1; 
  guess=array( 
   "p" => 2, 
   "a" => cxy/dx2, 
   "m" => my1-guess["a"]*mx1, 
   "s" => pow(dy2-pow(cxy,2)/dx2,0.5), 
   "MLE" => 0 
  ); 
  guess["MLE"]=GLMLE(guess); 
  stepx=(stepn-stepn%2)/2; 
  stepv=array();for(i=0;i<stepn;i++)stepv[i]=exp((i-stepx)/50.0); 
} 
function ERegression.GLMLE(&it){ 
  g1=gamma1p(it["p"]); 
  g3=gamma3p(it["p"]); 
  t1=m*log(it["p"]*pow(g3,0.5)/pow(g1,1.5)/it["s"]/2.0); 



  t2=pow(g1/g3,it["p"]/2.0)*pow(it["s"],it["p"]); 
  t3=0.0; 
  for(i=0;i<m;i++){t3+=pow(abs(y[i]-it["a"]*x[i]-it["m"]),it["p"]);} 
  return(t1-t3/t2); 
} 
 
The optimal solution of Eq6 is iteratively obtained from the optimal solution Eq7 by making small 
changes to the actual values of the coefficients and selecting the new ones which makes the MLE 
value greater. The weights of changes are more or less arbitrary, and the selected ones are a 
compromise of convergence speed in the convergence space. 
function ERegression.Steps(){ 
 itera=array();bestf=guess; 
 for(;;){ 
  for(i1=0;i1<stepn;i1++){ //for p 
   itera["p"]=guess["p"]*stepv[i1]; 
   for(i2=0;i2<stepn;i2++){ //for a 
    itera["a"]=guess["a"]*stepv[i2]; 
     for(i3=0;i3<stepn;i3++){//for m 
      itera["m"]=guess["m"]*stepv[i3]; 
      for(i4=0;i4<stepn;i4++){//for s 
       itera["s"]=guess["s"]*stepv[i4]; 
       itera["MLE"]=GLMLE(itera); 
       if(itera["MLE"]>guess["MLE"])bestf=itera; 
      } 
     } 
    } 
   } 
   itera=bestf; 
   if(abs(itera["MLE"]-guess["MLE"])<stope)break; 
   guess=itera; 
  } 
 } 
} 
 
The algorithm was implemented (in PHP). The program find of the solutions of Eq6 starting with 
the initial solutions identified by applying Eq7. 
The values of (Y) and independent (X) variables are read from a given *.txt file and the array of X 
and Y is returned through the function named get_data: 
function get_data($text){ 
 $a=explode("\r\n",file_get_contents($text)); //get the data from the text file 
 array_shift($a); //chop the headers 
 $x=array(); $y=array(); //initialize with empty the arrays of observed values 
 for($i=0; $i<count($a); $i++){ //for each line containing data 
  $b=explode("\t",$a[$i]); //split the line into the pair of x and y values 
  $x[]=$b[1]; $y[]=$b[2]; //collect x and y values 
 } 
 return(array($x,$y)); //return arrays of values 
} 
 
The main part of the program calls the ERegression object to find the solution to the given data: 
$xy=get_data("some_file_name.txt"); //return the data as an array of two arrays 
$reg_xy = new ERegression($xy[0],$xy[1]); //instantiate the ERegression object 
$reg_xy->Steps(); //iterate the optimal solution 
 
The source code of the implemented algorithm is freely available on request from the authors. 
 
4. Results 
The developed algorithm was tested on ten different data sets. The number of iteration needed to 
find the optimal solution varied from 9 (set10) to 185 (set4b). The number of iteration needed to 
reach the optimal solution seems not being related with the number of compounds in the sample 



when the same class of compounds is investigated (63 iteration – set1a, 51 iteration – set1b, 86 
iteration – set1c). The number of iteration needed to obtained the optimal solution was equal with 
173 for the smallest dataset (set2) and 86 for the dataset with the highest number of compounds 
(set1c). 
The results of simulation study obtained for the ideal solution (q = 2 – residual follows the Gaussian 
distribution) and for solution that satisfy the Eq6 are presented in Table 3. The values of calculated 
coefficients (a, b and σ) are provided with three decimals; equal values for q=2 and optimal q were 
obtained for: 
• a coefficient – set1b, set3, set6 
• b coefficient – set3, set6, set8, set10; 
• σ – set 1b, set1c, set3, set4a, set5, set6, set8, set9, set10. 
 

Table 3. Optimization results: q=2 vs. q determined to satisfy Eq6 
q=2 q=? set n a b=μ σ p a b=μ σ 

1a 35 0.678 -1.386 0.218 9.52 0.638 -1.181 0.222 
1b 126 0.647 -1.050 0.298 4.36 0.647 -1.029 0.298 
1c 250 0.509 -0.443 0.596 1.29 0.563 -0.623 0.569 
2 24 -0.004 2.095 0.414 0.61 -0.005 2.270 0.516 
3 73 188.408 -507.959 3.762 1.34 188.408 -507.959 3.762 
4a 40 1.000 5.232 0.308 2.81 1.041 5.338 0.308 
4b 30 0.002 -61.168 0.945 0.67 0.002 -64.950 0.964 
5 132 0.024 -3.812 1.374 1.70 0.026 -3.967 1.374 
6 80 0.255 -1.216 0.558 2.87 0.255 -1.216 0.558 
7 47 -0.578 2.646 0.360 3.43 -0.555 2.594 0.353 
8 37 -4.129 5.789 0.372 1.29 -4.297 5.789 0.372 
9 47 47.561 -0.169 0.319 3.17 49.502 -0.279 0.319 
10 60 0.348 1.711 0.492 1.74 0.355 1.711 0.492 
q = power of the errors; a, b = coefficients in the simple linear model;  
μ = population mean; σ = population standard deviation 

 
The evolution of power of the errors obtained in the simulation study according to iteration is 
presented in Figure 1. 
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Figure 1. The pattern distribution of value of power of the errors according with iteration 
 
The evolution of value of power of the errors was in both directions starting with the second 
iteration and as expected never achieved negative values (see Figure 1) and in most of cases the q 
from the MLE proved significantly different by q=2 (Table 4). 
 

Table 4. The p-value associated to the difference between q=2 and q resulted from MLE 
Set p-value 
1a 4.20·10-54 
1b 3.07·10-115 
1c 2.42·10-53 
2 1.76·10-12 
3 6.93·10-2 
4a 1.30·10-19 
4b 1.16·10-8 
5 7.33·10-3 
6 3.39·10-23 
7 1.06·10-30 
8 4.75·10-14 
9 9.01·10-29 

10 6.09·10-5 
 

The plot of both regression lines (simple linear regression and associated 95% confidence interval 
and MLE regression) for each investigated data sets are presented in Figure 2.  
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Figure 2. The line of SLR (q=2) and MLE (q determined to satisfy Eq6) 
 
 
5. Discussion 
The proposed solution for solving the simple linear regression without making any assumptions 
about the power of the errors has been successfully implemented and reliable solutions were 
obtained. 
The number of iteration needed to reach the solution proved not in relation with the number of 
compounds in the sample, the maximum number of iterations being almost 21 times more than the 
minimum number of iterations.  
The analysis of the obtained results revealed the following: 
• In 9 out of 13 cases, at least one coefficient (a, b, σ) proved equal for q=2 and q determined to 

satisfy Eq6. 



• In 6 out of 13 cases the power of the errors obtained by MLE proved significantly higher than 2 
(see Table 2, and Table 4). The difference varied from 0.8099 (set4a) to 7.5176 (set1a) (see 
Table 2). 

• Just in one case, the difference between powers of the errors proved not statistically different 
(set3, p = 0.0693). 

• In 6 out of 13 cases the difference between power of the errors (SLR and MLE) proved lower 
than 1 (see Table 3) 

• The smallest distance between the powers of the errors (from SLR and MLE) was of 0.2613 
(set10). Note that the powers of the errors proved significantly different (p = 6.09·10-5, Table 4).  

• Two classes of compounds (set3 and set6) proved identical values of a, b, and σ unconcerned 
the method used in the regression analysis (SLR or MLE, see Table 3). 

The analysis of the evolution of the power of the errors as function of iteration revealed that even if 
identical values of p are obtained in the first 29 iterations for the two related samples (set1 and set2, 
Figure 1) the pattern is not representation for the class of the compounds. As can be seen from the 
distribution of power of errors in Figure 1, 1c the pattern is significantly different by those observed 
on subsets of the whole class of compounds (1a and 1b, Figure 1). Opposite behavior is also 
observed for the other two related samples (), the value of p increased until a maximum (iteration 29 
for set2 and iteration 48 for set1) and decrease after this value (the decrease is sharper in set1 
compared to set2). The power of the errors for set3 and set4 decreased in steps, with a sharper 
decreased in set3 compared to set4 (Figure 1). Overall, two distinct patterns can be observed in 
Figure 1: 
• The values of power of the error increase with iteration until peaks and after the power of the 

error decrease (sometimes decreases in steps – set6, set7 and set9): set1a, set1b, set4a, set6, 
set9. 

• The values of power of the error decrease in steps with the increase of iteration: set1c, set2, set3, 
set4b, set5, set8 and set10. 

The analysis of the regression lines presented in Figure 2 revealed that, in one case represented by 
set7, the assumption of the linearity of logKI with n-rings is violated and for this dataset the simple 
linear regression is not the proper analysis. In 4 out of 13 cases, the MLE line is partly outside the 
95% confidence boundaries of the SLR line (set1a, set1c, set2, and set4b Figure 2). Accordingly, in 
all these cases, it could be considered that the MLE linear model is significantly different by the 
SLR model. The overlapping of MLE linear line and SLR line is observed for the set3, without 
being possible to make a visual distinction between the two lines (Figure 2). For this set, the q 
determined to satisfy Eq6 was equal with 1.34 and proved not significantly different by convenient 
value of 2 (see Table 4). For all other sets of investigated compounds the MLE linear line is within 
the boundaries of 95% confidence intervals of SLR line and thus even if the powers of the errors 
proved significantly different by the convenient value of 2 (see Table 2), these MLE models could 
not be considered significantly different by SLR models.  
To sum-up, it is certainly that the proposed approach of maximizing the probability of observing the 
event according to the random error fit the observed data and the q is significantly different by the 
convenient value (when q=2) in assessment of the linear relationship between one dependent and 
one independent variable. No pattern could be identified between iteration and sample size on the 
investigated sets of (X,Y) pairs. It is expected that the recognized behavior of the power of the errors 
to be identified on other (X,Y) pairs, analysis which is currently conducted by our team. The relation 
presented in Eq6 thereby defines a new general approach to treat the relationships. Practically, the 
expression Si = Yi-aXi could be replaced with any expression of dependency (not just linear), such 
as: 
• Exponential: Si=Yi-a1·exp(-Xi/a2) for Y ~ a0 + a1·exp(-X/a2); 
• Double exponential: Si=Yi-a1·exp(-Xi/a2)-a3·exp(-Xi/a4) for Y ~ a0 + a1·exp(-X/a2) + a3·exp(-

X/a4); 
• Power: Si=Yi-a1·pow(Xi,a2) for Y ~ a0 + a1·pow(X,a2); 
• Inversed: Si = Yi - a1/(Xi-a2) for Y ~ a0 + a1/(X-a2); 



The relation presented in Eq6 may be also extended to the multiple linear regression (Y ~ a0 + 
Σj>0ajXj) when the expression Si = Yi-aXi become Si = Yi-Σj>0ajXj,i. If in the case of multiple linear 
regressions the classical method (minimizing the squared error) maximizes the correlation 
coefficient, the proposed approach (Eq6) maximizes the probability of observing the event 
according to the random error. Accordingly, Eq6 has a significant advantage compared to the 
classical approach. The classical approach that maximizes the correlation coefficient is exposed to 
type I errors, a model of regression could be accepted even if the model does not exist. Opposite, 
the proposed approach that maximizes just the chance of observation (the approach has just one 
hypothesis: the error between the observation (Y) and the model (Ŷ) must be random and its value 
does not depend on the size of the observed value) is not affected by a type I error. In the case of 
simple linear regression, application of Eq6 did not change the correlation coefficient between Y 
and Ŷ but offer a solution in regards of estimated valued of Y and of the unknown coefficients 
(estimators of the population coefficients) that enter in a dependence relation between X and Y. The 
relation proposed in this manuscript (Eq6) introduced an additional parameter in the estimation, 
namely the power of the errors of Gauss-Laplace distribution (p) (this led to decrease by one unit of 
the degrees of freedom in the analysis of variance in the regression model). 
The MLE approach is frequently used in estimation of unknown parameters and it is known to be 
sensitive to outliers (±influential compounds) in the data [43,44,45]. No outliers have been 
identified in the dependent variable on set2 and set3 [41,43,44]. Therefore, on these two sets of 
compounds, is a certainty that the proposed approach was not affected by the presence of outliers in 
the data. Evaluation of how the values in the investigated sets could lead to identification of outliers 
(±influential compounds [46,47,48]) was beyond the aim of the present study. The proposed 
approach proved its usefulness in estimation of SLR parameters and is now under evaluation by our 
team on different types of classes of compounds and relations to assess its behavior and robustness.  
 
6. Conclusions 
The approach proposed in this manuscript demonstrate feasible for estimating the parameters of the 
simple linear regression, in the absence of the assumption that the errors are normally distributed, 
assumption replaced by a more general one, that the errors are Gauss-Laplace distributed. The 
obtained results demonstrated that in 12 out of 13 investigated cases the power of the error is 
significantly different by the convenient values of two. However, the plot of MLE and SLR lines 
showed that just in 3 out of 12 cases, the models are significantly different. 
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