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SUMMARY 

The oscillating reactions are the most spectacular and essential for life [1]. All live 

processes are bases on one or more oscillating reactions [2, 3]. The possibility of 

periodically altering the concentrations of the reactants, the agents and the product, in 

space and time, is a result of the autocatalysis. The heartbeat is controlled by an 

oscillating electrical signal; which is generated by chemical reactions that should be also 

oscillatory. [4-6]. Other direction is to models the kinetic processes that are involved in 

chemical reactions [7]. The present paper describes three variants of well the known 

oscillating reaction models and presents the mathematical equations associated with them. 

The differential equations are numerically solves and fit with MathCad program. 
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INTRODUCTION  

The first characteristic feature of oscillatory reactions is non-linearity. Many 
reactions display non-linear behavior when far from equilibrium, most of them do not 
exhibit oscillatory behavior. Non-linearity of the system is necessary but not suffices to 
provide oscillations. A condition for oscillatory behavior is the existence of an 
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autocatalysis. One consequence of autocatalysis is the possibility that concentration of 
reactants, intermediates or products will vary periodically either in space or in time. 

 

t1
1 0.5 0 0.5 1

1

0.5

0

0.5

1

t2
1 0.5 0 0.5 1

1

0.5

0

0.5

1

 
Figure 1. Concentration gradient in an oscillating reaction at the t, and at the t + Δt moments; 

Avi animation: http://lori.academicdirect.ro/free/RO.avi 
 

Figure 1 represents two temporary aspects of the space distribution (distribution in 
space) of the reaction products through the concentration wave front in the proximity of the 
electron participates in the reaction as a reactant. A general characteristic of the oscillating 
reactions in that, under the same conditions, all the participants from the reaction chain 
oscillate with the same frequency but a different displacement (lagging) shift. 

LOTKA – VOLTERRA AUTOCATALYTIC OSCILLATOR MODEL 

For the first time Lotka [8] suggested a mechanism of a complex reaction, in 
homogeneous phase (stage), which shows damped oscillations. Ten years later, in his paper, 
[9] Lotka modified the mechanism suggested in 1910 in order to generate undamped 
oscillations. The mechanism is names Lotka-Volterra and it is further present. The 
following pattern of reactions is considered (equation 1 and 2): 

R + X → 2X, X + Y → 2Y, Y → P, P → 
υ = κ1·[R]·[X], υ = κ2·[X]·[Y], υ = κ3·[Y], υ = κ4·[P] 

The last equation (1d), represents an extraction process of the reaction product P, 
while the stages (1a) and (1b) are autocatalytic. In Lotka–Volterra model of the reaction 
mechanism, concentration of the reactant R is maintained constant, (for example either by 

http://lori.academicdirect.ro/free/RO.avi
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an addition in the reaction vessel or by an equilibrium between two non-miscible phases 
when necessary). These restrictions cause the concentrations of X and Y 
intermediaries/agents to be variable / changeable / unsteady (equations 3): 

d[X]
dt

= υ(29a) − υ(29b) = κ1·[R]·[X] − κ2·[X]·[Y], d[Y]
dt

= υ(29b) − υ(29c) = κ2·[X]·[Y] − κ3·[Y] 

Equations (3) form a system of differential equations with the functions [X] = 
[X](t) and [Y] = [Y](t). This system can be simply solves by a numerical method [10]. 
Thus, the equations (3) became (equation 4): 

xn+1 = xn+ (tn+1-tn)·xn·(κ1·[R]-κ2·yn), yn+1 = yn+(tn+1-tn)·yn·(κ2·xn-κ3) 
With numerical values x0 = [X]0 = 1, y0 = [Y]0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, [R] = 2  

there can be produced/generated the numerical series/systems (xn)n≥0 şi (yn)n≥0 
corresponding to the temporal  series (tn)n≥0. 
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Figure 2. The oscillation of the intermediaries and the variation path ([X],[Y]) in L-V mechanism 

 
In order to obtain an as faithful representation of the mechanism as possible a very 

fine/careful division of the temporal coordinate in the numerical simulation is required. 

Thus, considering the series tn = n/105 with n = 0,1..5·105 there are obtained the 

representations from figure 2 for the concentration of the intermediaries [X] = (xn)n≥0 şi [Y] = 

(yn)n≥0. In the figure 3, the concentration of the reaction product [P] develops/grows in the time 

through Pn (the equations 2c and 2d, taking κ4 = 3). 
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Figure 3. The variation of the product concentration and storage in L-V mechanism 
 

Carrying out/performing the regression resulted from the equation (2c) and 
represented in fig. 3, by pn, according to the concentration [P] and depending on time, the 
regression slope gives the average rate of formation equal to 1.481. 

There are a few remarks to be made, namely: the sum of average concentrations of 
the agents is maintained in time, as the regression equation xyn also is shows (the slope of 
the regression equation is null). 

This average sum M([X]) + M([Y]) = 1.365; hence it results that the average 
concentrations of the agents also remain constant in time; the values of the average 
concentrations are M([Y]) = 1.468 and M([Y]) = 1.263. 

THE BRUSSEL MODEL OF AUTOCATALYTIC OSCILLATION 

The brussel model was initiated by a group from Bruxelles directed by Ilya 
Prigogine it introduce for the first time, mechanism of a reaction whose scheme of 
evolution converged on an attractor [11]. 

More authors have changed this variant and have studied the systems running 
according to this mechanism [12,13]. Further, a simplified variant is presented (equation 5): 

R → X, X + 2Y → 3Y, Y → P; υ = κ1·[R], υ = κ2·[X]·[Y]2, υ = κ3·[Y] 
As in the previous situations, it is supposed that the concentration of the reacting 

substance R remains constant and the product P may be extracted from the system by a 
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reaction of the type (5). X and Y are the intermediaries again. Their rate equations written 
based on the mechanism (5) are (equation 6): 

d[X]
dt

 = υ(39a) − υ(39b) = κ1·[R1] − κ2·[X]·[Y]2, d[Y]
dt

 = υ(39b) − υ(39c) = κ2·[X]·[Y]2 − κ3·[Y] 

Though the equations (6) seem simpler, at first sight, they are even more difficult 
to be solved by integration than (6). Moreover, the literature has not recorded their 
integration into the general case described by (6). 

Besides, the equations (6) do not lead to an attractor model not matter by values of 
the constants of rate and of the concentrations [R], [X]0 and [Y]0. The attempt of solving (6) 
is full of surprises. For most of the values, a system that develops towards a position of 
equilibrium is obtain; there are values for which damped oscillations to equilibrium are 
found again; the un-damped periodical oscillations have also an important role, which is 
confirmed by the majority of the organisms in which the cellular biochemical processes are 
based on such oscillations. 

The processes taking place within the heart are a conclusive example; the 
periodical heartbeats are due to processes of this type. The importance of these processes is 
great. This was the reason for which Ilya Prigogine was awarded the Nobel Prize for 
chemistry in 1977, namely for his theories on the dissipative systems. 

The equations (6) are simplified [14] if [R] = 1, κ1 = 1 şi κ3 = 1, are chosen and 
when the differential system of equations becomes (equation 7): 

x& = 1 – κ2·x·y2; = κ2·x·y2 – y y&

where the derivate related to the time of the x variable was . This system of the 
differential equation (13) does not offer more chances for an exact resolution either. 
However, the numerical simulation is made in the same way. Thus, the iteration equation of 
variation for (13) is writes (equation 8): 

x&

xn+1 = xn+(tn+1-tn)·(1-κ2·xn·yn
2); yn+1 = yn+(tn+1-tn)·(κ2·xn·yn

2-yn) 
Now let us chouse κ2 = 0.88. Taking into consideration two cases, the first one in 

which the initial concentrations of the agents are x10 = [X]1,0 = 1.5 and y10 = [Y]1,0 = 2 and 
second one with x20 = [X]2,0 = 2 şi y20 = [Y]2,0 = 2.5. Using the series tn = n/100 with n = 0, 
1, …, 150 following representations for the concentrations of the agents [X] = (xn)n≥0 and 
[Y] = (yn)n≥0 are obtained (figure 4). 
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Figure 4. The concentrations of the intermediaries up to the attractor  

for two cases with different initial conditions 
 

The variation diagram of [Y] depending on [X] and the variation in time of the storage of 

reaction product are depicting in figure 5. 

Now, increasing the time interval by choosing another n = 0,1..,3000 the following 

concentrations of the agents are obtained [X]1 = (x1n)n≥0, [X]2 = (x2n)n≥0, [Y]2 = (y2n)n≥0 şi [Y]2 = 

(y2n)n≥0 for the two cases 1 and 2 of the chosen system (fig. 6). It is notice that, even if they do not 

evolve according the same values, same period and amplitude of the oscillations are record. 

Figure 7 gives the dependence of [Y] under [X] for the cases as well as the accumulation of 

the product. 
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Figure 5. The ([Y], [X]) hodograph (the entrance of [Y] related to [X] on the same gravitational orbit for 

both cases) and the product – time dependence two for cases having different initial conditions. 
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Figure 6. The periodical evolution with same oscillation period T = 0.226 and different initial conditions 
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Figure 7. Convergence at atractor of brusselator system independent from initial conditions and  

different quantities of resulted product for brusselator system 
 

The difference between the Lotka-Voltera model and Bruxelles model one is the 
following: The Lotka-Voltera model oscillates around the initial values of the 
concentrations of the agents, whereas the Bruxelles one converges, in time on the same 
variation equation irrespective of the initial values of the concentrations of the agents. In 
fact the attractor does not appear for any of their values; for a given k2 there are minimum 
y0,min şi x0,min values from which the periodical oscillations arise and the system tends 
towards the curve given in  figure 7.  The convergence on the attractor of the brusselator 
system independent of the initial conditions and (b) different quantities of the product 
obtained. 
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CONCLUSIONS 

There exist a many models of biochemical processes reactions, and every process 
has some characteristics, as we described below. The importance of every mechanism is 
give by his applications. It exist much more kinetic models, unexplained in this paper, such 
as Oregonator model [3], one of them implying tens of substances and reactions. As we 
mentioned before, most spectacular and important because is most frequent in nature is the 
brusselator model, every alive organism has one. The symbolic calculations of reaction rate 
for biochemical processes are, in most of cases, impossible. In opposite, the numerical 
modeling of biochemical kinetics proves that it is a very good instrument for mechanism 
understanding, comparative studies and model validation. 
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