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ABSTRACT. In this study is communicated a preliminary result from a property-property study on 
a series of chemical compounds regarding on the obtaining of a quantitative relationship between the 
properties. The study was conducted on a series of 190 inorganic chemical compounds for which 
both properties taken into study are known. The correlation analysis revealed that is a strong 
relationship between the boiling temperature and the heat of vaporization at that temperature, having 
the variance in the paired series of data explained at over 90%. 
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INTRODUCTION  
Regression analysis and distribution of errors 

Even if first studies about binomial expressions were made by Euclid [1], the mathematical basis of 
the binomial distribution study was put by Jacob Bernoulli [1654-1705]. The Bernoulli’s studies, with 
significance for the theory of probabilities [2], were published 8 years later after his death by his nephew, 
Nicolaus Bernoulli. In Doctrinam de Permutationibus & Combinationibus section of this fundamental work 
he demonstrates the Newton binomial series expansion. Later, Abraham De Moivre [1667-1754] put the 
basis of approximated calculus for binomial distribution approximation using the normal distribution [3]. 
Later, Johann Carl Friedrich Gauss [1777-1855] put the basis of mathematical statistics [4]. 
 The simplest association model is linear association. The model assumes that exist a relationship 
between two paired characteristics expressed by a straight line. The expression of this association is given by 
the implicit equation of a straight line: ax + by + c = 0. If a = 0 then the equation of the line reduces to by + c 
= 0. If further c ≠ 0 gives a relationship which defines the mean of the Y associated characteristic but no 
relationship with X. Similarly if b = 0 then the equation of the line reduces to ax + c = 0 and if further c ≠ 0 
gives a relationship which defines the mean of the X associated characteristic but no relationship with Y. The 
remained case, if c = 0 defines a degenerated linear model in which is no intercept between the 
characteristics X and Y. 
 Which expression of the linear equation should be use is a matter of experimental error treatment. 
Going further, if a linear model defines the relationship between the X and Y characteristics, then if we take 
samples (xi, yi)1≤i≤n of these two (X and Y) characteristics then the relationship in terms of a experimental 
error it should still seen. 
 The information related with the distribution of the error is important. A common assumption is to 
expect that an error εi (or ηi) to occur in equal probability as an error -εi (or -ηi), and accordingly the 
distribution of the experimental error is symmetrical. 
 An experimental design that gives different weight to the errors led to a weighted regression. Usually 
the weight are function of the observable and/or expectance ( )x̂,x(fv iii = , )ŷ,y(gw iii = ). The reason of 
giving weight to the errors is to normalize (e.g. the distribution of the errors to become normal or at least to 
have a known distribution). Another assumption regarding the experimental error (εi and ηi) that must be 
taken in consideration in order to obtain the estimations of the population parameters is ‘the experimental 
error follows a known distribution’. 
 
Structure-activity relationships 
 Deriving of the first (big) family of molecular descriptors was communicated in [5] and about ten 
years after the usage potential of this sort of methodology investigating structure-activity relationships were 
significantly increasing by developing the search with methodology employing genetic algorithms [6]. 
 Relationships that are more common are property-property relationships that often occur due to the 
intrinsic relationships between the derivatives of thermodynamic functions (see for details [7]). 
 Non-linear relationships are more difficult to identified due to the unknown dependence form, and 
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are known as being less efficient in prediction than the linear ones, even so in some cases may outperform 
the linear models (as were obtained in [8]). 
 Physico-chemical properties such as the heat of vaporization are of technical interest for designing of 
devices working at transition phase between gaseous and liquid state [9, 10,11]. 
 For a small part of chemical compounds are available measurements of physico-chemical parameters 
and at least for a part of them the values are regularly updated (a representative source is given in [12]); this 
is one of the reasons for which seeking for relationships among properties is legitimate. 
 In this work, a computational study was conducted for a series of 190 inorganic chemical 
compounds to relate the molar enthalpy (heat) of vaporization (ΔvapH) at the normal boiling point (tb) referred 
to a pressure of 101.325 kPa (760 mmHg) with their boiling point (tb). Our aim was to investigate if 
transformation of variables to lead to normal distribution gives a significant simple regression model linking 
the boiling temperature with heat of vaporization. 
 
MATERIALS AND METHODS 

The data were taken from a recent edition of the serial containing reference physical and chemical 
data [13] and refers both the boiling point and the heat of vaporization, the primary study reporting these 
values being [14]. 

The chemical compounds included in the study, listed in the ascending order of their boiling point, 
are: helium (He), hydrogen (H2), Neon (Ne), Nitrogen (N2), Fluorine (F2), Argon (Ar), Oxygen (O2), Krypton 
(Kr), Fluorine monoxide (F2O), Nitrogen trifluoride (NF3), Silane (SiH4), Xenon (Xe), Phosphorus(III) 
fluoride (PF3), Chlorine fluoride (ClF), Boron trifluoride (BF3), Fluorosilane (SiFH3), Trifluorosilane 
(SiF3H), Diborane (B2H6), Germane (GeH4), Phosphine (PH3), Hydrogen chloride (HCl), Phosphorus(V) 
fluoride (PF5), Difluorosilane (SiF2H2), Tetrafluorohydrazine (N2F4), Chlorotrifluorosilane (SiClF3), 
Hydrogen bromide (HBr), Arsine (AsH3), Nitrosyl fluoride (NFO), Hydrogen sulfide (H2S), Difluorine 
dioxide (F2O2), Arsenic(V) fluoride (AsF5), Phosphorothioc trifluoride (PSF3), Stannane (SnH4), 
Phosphorus(III) chloride difluoride (PClF2), Perchloryl fluoride (ClFO3), Thionyl fluoride (SOF2), Hydrogen 
selenide (H2Se), Sulfur tetrafluoride (SF4), Hydrogen iodide (HI), Chlorine (Cl2), Tetrafluorodiborane (B2F4), 
Ammonia (NH3), Dichlorodifluorosilane (SiCl2F2), Chlorosilane (SiClH3), Stibine (SbH3), Disilane (Si2H6), 
Sulfur dioxide (SO2), Nitrosyl chloride (NClO), Hydrogen telluride (H2Te), Bromosilane (SiBrH3), Chlorine 
monoxide (Cl2O), Thionitrosyl fluoride (FNS), Dichlorosilane (Cl2H2Si), Chlorine dioxide (ClO2), Chlorine 
trifluoride (ClF3), Boron trichloride (BCl3), Phosphorus(III) dichloride fluoride (PCl2F), Tungsten(VI) 
fluoride (WF6), Tetraborane(10) (B4H10), Bromine fluoride (BrF), Digermane (Ge2H6), Trichlorosilane 
(SiHCl3), Rhenium(VI) fluoride (ReF6), Molybdenum(VI) fluoride (MoF6), Hydrazoic acid (HN3), Bromine 
pentafluoride (BrF5), Aluminum borohydride (AlB3H12), Sulfur trioxide (SO3), Osmium(VI) fluoride (OsF6), 
Vanadium(V) fluoride (VF5), Trisilane (Si3H8), Iridium(VI) fluoride (IrF6), Arsenic(III) fluoride (AsF3), 
Tetrachlorosilane (SiCl4), Bromine (Br2), Diphosphine (P2H4), Pentaborane(11) (B5H11), Dibromosilane 
(SiBr2H2), Sulfuryl chloride (SO2Cl2), Hydrogen disulfide (H2S2), Thionyl chloride (SOCl2), Phosphorus(III) 
chloride (PCl3), Germanium(IV) chloride (GeCl4), Boron tribromide (BBr3), Water (H2O), Iodine 
pentafluoride (IF5), Selenium tetrafluoride (SeF4), Phosphoryl chloride (PCl3O), Tribromosilane (SiHBr3), 
Trigermane (Ge3H8), Hydrazine (N2H4), Tin(IV) chloride (SnCl4), Chromium(VI) dichloride dioxide 
(CrCl2O2), Bromine trifluoride (BrF3), Vanadyl trichloride (VOCl3), Arsenic(III) chloride (AsCl3), 
Titanium(IV) chloride (TiCl4), Hydrogen peroxide (H2O2), Vanadium(IV) chloride (VCl4), Tetrabromosilane 
(SiBr4), Rhenium(VI) oxytetrafluoride (ReF4O), Phosphorus(III) bromide (PBr3), Iodine (I2), Rhenium(VII) 
dioxytrifluoride (ReF3O2), Tungsten(VI) oxytetrafluoride (WOF4), Molybdenum(VI) oxytetrafluoride 
(MoF4O), Germanium(IV) bromide (GeBr4), Phosphoryl bromide (PBr3O), Gallium(III) chloride (GaCl3), 
Tin(IV) bromide (SnBr4), Boron triiodide (BI3), Molybdenum(V) fluoride (MoF5), Antimony(III) chloride 
(SbCl3), Arsenic(III) bromide (AsBr3), Rhenium(V) fluoride (ReF5), Phosphorus(III) iodide (PI3), 
Tantalum(V) fluoride (TaF5), Tungsten(VI) oxytetrachloride (WOCl4), Osmium(V) fluoride (OsF5), 
Titanium(IV) bromide (TiBr4), Niobium(V) fluoride (NbF5), Tantalum(V) chloride (TaCl5), Niobium(V) 
chloride (NbCl5), Aluminum bromide (AlBr3), Molybdenum(V) chloride (MoCl5), Gallium(III) bromide 
(GaBr3), Phosphorus (P), Tetraiodosilane (SiI4), Antimony(III) bromide (SbBr3), Mercury(II) chloride 
(HgCl2), Mercury(II) bromide (HgBr2), Tungsten(VI) chloride (WCl6), Gallium(III) iodide (GaI3), 
Tantalum(V) bromide (TaBr5), Mercury(II) iodide (HgI2), Mercury (Hg), Tin(IV) iodide (SnI4), 
Titanium(IV) iodide (TiI4), Aluminum iodide (AlI3), Tellurium tetrachloride (TeCl4), Antimony(III) iodide 
(SbI3), Arsenic(III) iodide (AsI3), Bismuth trichloride (BiCl3), Sulfur (S), Bismuth tribromide (BiBr3), 
Beryllium chloride (BeCl2), Beryllium iodide (BeI2), Tin(II) chloride (SnCl2), Tin(II) bromide (SnBr2), 
Indium(I) bromide (BrIn), Zinc bromide (ZnBr2), Selenium (Se), Indium(I) iodide (InI), Tin(II) iodide (SnI2), 
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Thallium(I) chloride (ClTl), Zinc chloride (ZnCl2), Cadmium iodide (CdI2), Cadmium (Cd), Thallium(I) 
bromide (BrTl), Thallium(I) iodide (ITl), Cadmium bromide (CdBr2), Lead(II) iodide (PbI2), Lead(II) 
bromide (PbBr2), Thorium(IV) chloride (ThCl4), Titanium(III) chloride (PbCl2), Titanium(III) chloride 
(TiCl3), Cadmium chloride (CdCl2), Tellurium (Te), Chromium(II) chloride (CrCl2), Molybdenum(VI) oxide 
(MoO3), Lead(II) fluoride (PbF2), Thallium(I) sulfide (STl2), Sodium hydroxide (NaOH), Titanium(II) 
chloride (TiCl2), Zinc fluoride (ZnF2), Silver(I) bromide (AgBr), Silver(I) iodide (AgI), Silver(I) chloride 
(AgCl), Bismuth (Bi), Lithium hydroxide (LiOH), Lithium fluoride (LiF), Thorium(IV) fluoride (ThF4), 
Lead (Pb), Cadmium fluoride (CdF2), Barium (Ba), Gallium (Ga), Aluminum (Al), Germanium (Ge), Gold 
(Au), and Boron (B). 

In order to relate the properties, the following methodology of analysis was applied: 
• Analysis the distribution of the boiling temperature values; if the values are not normally distributed, 

then find the transformation which normalizes it; 
• Analysis the distribution of the heat of vaporization values; if the values are not normally distributed, 

then find the transformation which normalizes it; 
• On the normalized data, by keeping the association given by the chemical compound on which these 

properties were measured, conduct the regression analysis; 
• After identification of the regression model, use the inverse of the transformations, which normalizes the 

data to analyze the model. 
 The analysis of the distribution was conducted with EasyFit [15] and the analysis of regression was 

conducted with Excel [16]. The distribution parameters were estimated using the Maximum Likelihood 
Method (MLE, [17]), and the agreement between the observations and the model were measured using 
Anderson-Darling statistic ([18]) and Kolmogorov-Smirnov statistic ([19, 20]). 
 
RESULTS AND DISCUSSION 
  The distribution analysis of the boiling temperature revealed that the normal distribution is rejected 
at all conventional levels of significance over 20% risks to be in error (Table 1). The analysis of lognormal 
distribution, were found that the location parameter determined by the maximum likelihood estimation is -
309.79. This value is near to -273.15 and suggests that a transformation of the scale from Celsius degrees to 
Kelvin degrees will lead to normalization of data. Indeed, after this transformation (T=t°C+273.15) the data 
series become lognormal distributed, and the hypothesis of the distribution cannot be rejected at a 
significance level of 5%. Thus, the probability associated with the Anderson-Darling statistic is 9.31% and 
the probability associated with the Kolmogorov-Smirnov statistic is 13.34%. Therefore, the data were further 
transformed with logarithm function and analyzed again. The probability associated with Anderson-Darling 
statistic become 9.07% and the probability associated with Kolmogorov-Smirnov statistic become 12.81% 
(see Figure 1 below), while the estimations of the population statistics were μ=6.0873 and σ=0.90038. 
 

Table 1. H0 (Data follow normal distribution): Results for different significance levels 
Boiling temperature Heat of vaporization Reject H0? 

α=0.2 α=0.1 α=0.0  5 α=0.01 α=0.2 α=0.  1 α=0.05 α=0.0  1
K-S Yes Yes Yes Yes Yes Yes Yes Yes 
A-D Yes Yes Yes Yes Yes Yes Yes Yes 
CS Yes Yes Yes Yes Yes Yes Yes Yes 
K-S = Kolmogorov-Smirnov; A-D = Anderson-Darling; CS = Chi-square  

 
  The distribution analysis of the heat of vaporization also revealed that the normal distribution is 
rejected at all conventional levels of significance over 20% risk being in error (Table 1). Looking for 
lognormal distribution, were found the three parameters lognormal distribution with the location parameter 
determined by the maximum likelihood estimation method as being -3.3553. This value was used to 
transform the observed data. After this transformation (ΔH1 = ΔH(tb)+3.3553) the data series become 
lognormal distributed, when the hypothesis of the distribution cannot be rejected at 5% risk being in error. 
Thus, the probability associated with the Anderson-Darling statistic is 23.53% and the probability associated 
with the Kolmogorov-Smirnov statistic is 16.34%. Therefore, the data were further transformed with 
logarithm function and analyzed again. The probability associated with the Anderson-Darling statistic 
become 23.95% and the probability associated with the Kolmogorov-Smirnov statistic become 16.31% (see 
Figure 2), and when estimations of the population statistics were μ = 3.8313 and σ = 0.84324. 
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Figure 1. Distribution fit for the transformed boiling temperatures as ln(b.p.°C+273.15) 
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Figure 2.  Distribution fit for the transformed heat of vaporization as ln(HVAP kJ/mol+3.3553) 

 
Regression analysis was applied on original data set and normalized data set and the obtained 

equations were analyzed to see if significant differences between models exist. Both investigated models 
(created using original and transformed data) proved significantly (Table 2), with a higher contribution to the 
intercept for the model obtained on original data and of the heat of vaporization on the model with 
transformed data. 

Table 2. Characteristics of obtained models 
Model Original data Normalized data 

R2 0.9574 0.9259 
R2

adj 0.9572 0.9255 
RMSE 14.16 0.23 
MAE 38.86 0.63 
MAPE 7.77 0.18 
F (p) 4224 (<0.0001) 2349 (<0.0001) 
Int [95%CI] 24.80 [22.46; 27.14] -1.65 [-1.88; -1.43] 
Coeff [95%CI] 0.11 [0.10; 0.11] 0.90 [0.86; 0.94] 
R2 = determination coefficient;  
R2

adj = adjusted determination coefficient; 
RMSE = root mean square error; 
MAE = mean absolute error; 
 F = Fisher’s statistic; p = probability to be in error; 
Int = intercept; 95%CI = 95% confidence interval;  
Coeff = the value of coefficient associated to heat of vaporization 

 
Our findings showed that the model created on original data (R=0.9785) had a significantly 

(p=0.0059) higher correlation coefficient compared with the model obtained on transformed data 
(R=0.9622). However, the values of the root mean square error (RMSE) and the mean absolute error (MAE) 
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showed that the model obtained on transformed data is more reliable (small values of both RMSE and 
MAE).  

The leave-one-out analysis was carried out to assess the internal validity of the models and the main 
characteristics of the models are given in Table 3. 

Table 3. Characteristics of models in leave-one-out analysis 
Model Q2 RMSE MAE MAPE Floo (ploo) 

Original data 0.9551 14.47 7.69 0.40 3995 (p<0.0001) 
Transformed data 0.9182 0.24 0.15 0.05 2104 (p<0.0001) 
Q2 = determination coefficient in leave-one-out (loo) analysis 
RMSE = root mean square error; 
MAE = mean absolute error; 

 
The root mean square error, mean absolute error and mean absolute percent error are smaller in the 

model with transformed data (Table 3) and thus sustain the validity and reliability of this model even that the 
determination coefficient is smaller compared to that obtained on original data. 
 A training and test analysis was conducted to assess the validity of identified model, with 126 
compounds in training set and the 64 in test set. The equation for model with original data is given in Eq(1) 

Y = 25.218+0.107*X         Eq(1) 
R2

Tr = 0.9741; n = 126 
R2

Ts = 0.9334; n = 64 
while the equation for model with transformed data is given in Eq(2): 

Y = -2.145 +0.982*X         Eq(2) 
R2

Tr = 0.9633; n = 126 
R2

Ts = 0.8888; n = 64 
 Graphical representation of performances in training and test analysis is given in Figure 3 for 
original data and in Figure 4 for transformed data. 
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Figure 3. Training vs test analysis: original data 
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Figure 4. Training vs test analysis: transformed data 

CONCLUSIONS 
As can be concluded from this analysis, it seems that these two properties (boiling point and heat of 
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vaporization at the boiling point) have a large part of their variance explained by one to each other and are 
suitable for a more detailed study meant to increase the explanatory power. 
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