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Abstract: We propose a derivative-free iterative method with fifth order of convergence for solving
systems of nonlinear equations. The scheme is composed of three steps, of which the first two steps
are that of third order Traub-Steffensen-type method and the last is derivative-free modification of
Chebyshev’s method. Computational efficiency is examined and comparison between the efficiencies
of presented technique with existing techniques is performed. It is proved that, in general, the new
method is more efficient. Numerical problems, including those resulting from practical problems viz.
integral equations and boundary value problems, are considered to compare the performance of the
proposed method with existing methods. Calculation of computational order of convergence shows
that the order of convergence of the new method is preserved in all the numerical examples, which
is not so in the case of some of the existing higher order methods. Moreover, the numerical results,
including the CPU-time consumed in the execution of program, confirm the accurate and efficient
behavior of the new technique.

Keywords: nonlinear equations; systems; derivative-free methods; fast algorithms;
computational efficiency

1. Introduction

We are concerned with the problem of solving a system of nonlinear equations

F(x) = 0. (1)

This problem can precisely be stated as to find a solution vector α = (α1, α2, ..., αm)T such
that F(α) = 0, where F(x) : D ⊂ Rm −→ Rm is the given nonlinear vector function F(x) =

( f1(x), f2(x), ..., fm(x))T and x = (x1, x2, ..., xm)T . The vector α can be computed as a fixed point
of some function M : D ⊂ Rm → Rm by means of fixed point iteration

x(0) ∈ D,

x(k+1) = M(x(k)), k ≥ 0. (2)

Many applied problems in Science and Engineering are reduced to solve numerically the system
F(x) = 0 of nonlinear equations (see, for example [1–6]). A plethora of iterative methods are developed
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in literature for solving such equations. A classical method is cubically convergent Chebyshev’s method
(see [7])

x(0) ∈ D,

x(k+1) = x(k) −
(

I +
1
2

LF(x(k))
)

F′(x(k))−1F(x(k)), k ≥ 0, (3)

where LF(x(k)) = F′(x(k))−1F′′(x(k))F′(x(k))−1F(xk). This one-point iterative scheme depends
explicitly on the first two derivatives of F. In [7], Ezquerro and Hernández present modification
in Chebyshev’s method that avoids the computation of second derivative F′′ while maintaining
third-order of convergence. It has the following form:

x(0) ∈ D,

y(k) = x(k) − a F′(x(k))−1F(x(k)),

x(k+1) = x(k) − 1
a2 F′(x(k))−1((a2 + a− 1)F(x(k)) + F(y(k))

)
, k ≥ 0. (4)

There is an interest in constructing derivative free iterative processes obtained by considering an
approximation of the first derivative of F from a divided difference of first order. One class of such
methods is called the class of Secant-type methods which is obtained by replacing F′ with the divided
difference operator [x(k−1), x(k) ; F]. Using this operator a family of derivative free methods is given
in [8]. The authors call this family the Chebyshev-Secant-type method and it is defined as

x(−1), x(0) ∈ D,

y(k) = x(k) − a [x(k−1), x(k) ; F]−1F(x(k)),

x(k+1) = x(k) − [x(k−1), x(k) ; F]−1(b F(x(k)) + c F(y(k))
)
, k ≥ 0, (5)

where a, b and c are non-negative parameters.
Another class of derivative free methods is the class of Steffensen-type processes that replaces

F′ with operator [w(x(k)), x(k) ; F], wherein w : Rm → Rm. The work presented in [9] analyzes
Steffensen-type iterative method which is given as

x(0) ∈ D,

y(k) = x(k) − a [w(x(k)), x(k) ; F]−1F(x(k)),

x(k+1) = x(k) − [w(x(k)), x(k) ; F]−1(b F(x(k)) + c F(y(k))
)
, k ≥ 0. (6)

For a = b = c = 1 and w(x(k)) = x(k) + βF(x(k)), β is an arbitrary non-zero constant, this method
possesses third order convergence. In this case y(k) is Traub-Steffensen iteration [6]. For β = 1, y(k)

belongs to Steffensen iteration [10]. Both of these iterations are quadratically convergent.
The two-step third order Traub-Steffensen-type method, i.e., the case of (6) for a = b = c = 1,

can be written as

x(0) ∈ D, w(x(k)) = x(k) + βF(x(k)),

y(k) = M2,1(x(k)),

x(k+1) = M3,1(x(k), y(k)) = y(k) − [w(x(k)), x(k) ; F]−1F(y(k)), k ≥ 0, (7)

where M2,1(x(k)) = x(k) − [w(x(k)), x(k) ; F]−1F(x(k)) is the quadratically convergent Traub-Steffensen
scheme. Here and in the sequel, the symbol Mp,i is used for denoting an i-th iteration function of
convergence order p. It can be observed that the third order scheme (7) is computationally more
efficient than quadratically convergent Traub-Steffensen scheme. The reason is that the convergence
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order is increased from two to three at the cost of only one function evaluation without adding extra
inverse operator. We discuss computational efficiency in later sections.

Researchers have always been trying to develop the iterative method with increasing efficiency
since different methods converge to the solution with different convergence speed. This can be
done either by increasing the convergence order or by decreasing the computational cost or both.
In [11], Ren et al. have derived a fourth order derivative-free method that uses three F, three divided
differences and two matrix inversions per iteration. Zheng et al. [12] have constructed two families
of fourth order derivative-free methods for scalar nonlinear equations, that are extendable to solve
systems of nonlinear equations. First family requires to evaluate three F, three divided differences and
two matrix inversions, whereas the second family needs three F, three divided differences and three
matrix inversions. Grau et al. presented a fourth order derivative-free method in [13] utilizing four F,
two divided differences and two matrix inversions. Sharma and Arora [14] presented a fourth order
derivative-free method that uses the evaluations of three F, three divided differences and one matrix
inversion per each step.

In search of more fast techniques, researchers have also introduced sixth and seventh order
derivative-free methods in [13,15–18]. The sixth order method in [13] proposed by Grau et al. requires
five F, two divided differences and two matrix inverses. Sharma and Arora [17] also developed a
method of at least sixth order which requires evaluation of five functions, two divided difference and
one matrix inversion per iteration. The seventh order method proposed by Sharma and Arora [15]
utilizes four F, five divided differences and two matrix inversions per iteration. The seventh order
methods presented by Wang and Zhang [16] use four F, five divided differences and three matrix
inversions. Ahmad et al. [18] proposed eighth order derivative free method without memory which
uses six functions evaluations, three divided difference and one matrix inversion.

The main goal in this study is to develop a derivative-free method of high computational efficiency,
that means a method with high convergence speed and low computational cost. Consequently,
we present a Traub-Steffensen-type method of fifth order of convergence which requires the evaluations
four F, two divided differences and only one matrix inversion per step. The scheme of the present
contribution is simple and consists of three steps. Of the three steps, the first two are that of cubically
convergent Traub-Steffensen-type scheme (7) whereas the third is derivative-free modification of
Chebyshev’s scheme (3). We show that the proposed method is more efficient than existing methods
of similar nature.

The content of the rest of the paper is summarized as follows. Basic definitions relevant to the
present work are stated in Section 2. In Section 3, the scheme of fifth order method is introduced and
its convergence behavior is studied. In Section 4, the computational efficiency of the new method is
examined and also compared with the existing derivative-free methods. In Section 5, the basins of
attractors are presented to check the stability and convergence of the new method. Numerical tests are
performed in Section 6 to verify the theoretical results as proved in Sections 3 and 4. Section 7 contains
the concluding remarks.

2. Preliminary Results

2.1. Computational Order of Convergence

Let α be a solution of the function F(x) = 0 and x(k−2), x(k−1), x(k) and x(k+1) be the four
consecutive iterations close to α. Then, the computational order of convergence (say, pc) can be
calculated using the formula (see [19])

pc =
log(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖)

log(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖)
. (8)
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2.2. Divided Difference

Divided difference operator for multivariable function F (see [4,5,20]) is a mapping [·, · ; F] :
D× D ⊂ Rm ×Rm → L(Rm) which is defined as

[x, y; F](x− y) = F(x)− F(y), ∀ (x, y) ∈ Rm. (9)

If F is differentiable, we can also define first order divided difference as (see [4,20])

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt, ∀ (x, h) ∈ Rm. (10)

This also implies that
[x, x ; F] = F′(x). (11)

It can be seen that the divided difference operator [x, y ; F] is an m×m matrix and the definitions (9)
and (10) are equivalent (for details see [20]). For computational purpose the following definition
(see [5]), is used

[x, y ; F]ij =
fi(x1, ....., xj, yj+1, ....., ym)− fi(x1, ....., xj−1, yj, ....., ym)

xj − yj
, 1 ≤ i, j ≤ m. (12)

2.3. Computational Efficiency

Computational efficiency of an iterative method for solving F(x) = 0 is calculated by the
efficiency index E = p1/C, (for detail see [21,22]), where p is the order of convergence and C is
the total cost of computation. The cost of computation C is measured in terms of the total number of
function evaluations per iteration and the number of operations (that means products and quotients)
per iteration.

3. The Method and Analysis of Convergence

Let us begin with the following three-step scheme

y(k) = M2,1(x(k)),

z(k) = y(k) − [w(k), x(k) ; F]−1F(y(k)),

x(k+1) = z(k) −
(

I +
1
2

LF(y(k))
)

F′(y(k))−1F(z(k)), (13)

where w(k) = x(k) + βF(x(k)), I is m × m identity matrix and LF(y(k)) =

F′(y(k))−1F′′(y(k))F′(y(k))−1F(yk).
Note that this is a scheme whose first two steps are that of third order Traub-Steffensen-type

method (7) whereas third step is based on Chebyshev’s method (3). The scheme requires first and
second derivatives of F at y(k). To make this a derivative-free method, we describe an approach
as follows:

Consider the Taylor expansion of F(z(k)) about y(k),

F(z(k)) ≈ F(y(k)) + F′(y(k))(z(k) − y(k)) +
1
2

F′′(y(k))(z(k) − y(k))
2
. (14)

Then, it follows that

1
2

F′′(y(k))(z(k) − y(k))
2
≈ F(z(k))− F(y(k))− F′(y(k))(z(k) − y(k)). (15)



Symmetry 2019, 11, 891 5 of 20

Using the fact that
F(z(k))− F(y(k)) = [z(k), y(k) ; F](z(k) − y(k)),

(see, for example [4,5]), we can write (15) as

F′′(y(k))(z(k) − y(k)) ≈ 2
(
[z(k), y(k) ; F]− F′(y(k))). (16)

Then, using the second step of (13) in the above equation, it follows that

F′′(y(k))[w(k), x(k) ; F]−1F(y(k)) ≈ −2
(
[z(k), y(k) ; F]− F′(y(k))

)
. (17)

Let us assume F′(y(k)) ≈ [w(k), x(k) ; F], then (17) implies

F′′(y(k))[w(k), x(k) ; F]−1F(y(k)) ≈ −2
(
[z(k), y(k) ; F]− [w(k), x(k) ; F]

)
. (18)

In addition, we have that

LF(y(k)) = F′(y(k))−1F′′(y(k))F′(y(k))−1F(yk)

≈ [w(k), x(k) ; F]−1F′′(y(k))[w(k), x(k) ; F]−1F(yk). (19)

Using (18) in (19), we obtain that

LF(y(k)) ≈ [w(k), x(k) ; F]−1F′′(y(k))[w(k), x(k) ; F]−1F(yk)

≈ −2
(
[w(k), x(k) ; F]−1[z(k), y(k) ; F]− I

)
. (20)

Now, we can write the third-step of (13) in modified form as

x(k+1) = z(k) −
(
2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F]

)
[w(k), x(k) ; F]−1F(z(k)). (21)

Thus, we define the following new method:

y(k) = M2,1(x(k)),

z(k) = M3,1(x(k), y(k)),

x(k+1) = z(k) − H(x(k))[w(k), x(k) ; F]−1F(z(k)), (22)

wherein H(x(k)) = 2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F].
Since the scheme (22) is composed of Traub-Steffensen like steps, we call it the

Traub-Steffensen-like method.
In order to explore the convergence properties of Traub-Steffensen-like method, we recall some

important results from the theory of iteration functions. First, we state the following well-known result
(see [3,23]):

Lemma 1. Assume that M : D ⊂ Rm → Rm has a fixed point α ∈ int(D) and M(x) is Fréchet differentiable
on α. If

ρ(M′(α)) = σ < 1, (23)

then α is a point of attraction for the iteration x(k+1) = M(x(k)), where ρ is a spectral radius of M′(α).

Next, we state a result which has been proven in [24] by Madhu et al. and that shows α is a point
of attraction for a general iteration function of the form M(x) = P(x)−Q(x)R(x).
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Lemma 2. Let F : D ⊂ Rm → Rm be sufficiently Fréchet differentiable at each point of an open convex set
D of α ∈ D, which is a solution of the nonlinear system F(x) = 0. Suppose that P, Q, R : D ⊂ Rm → Rm

are sufficiently Fréchet differentiable functions (depending on F) at each point in the set D with the properties
P(α) = α, Q(α) 6= 0, R(α) = 0. Then, there exists a ball

S = S̄(α, ε) = {‖α− x‖ ≤ ε} ⊂ D, ε > 0,

on which the mapping
M : S→ Rm, M(x) = P(x)−Q(x)R(x), ∀ x ∈ S

is well defined. Moreover, M(x) is Fréchet differentiable at α, thus

M′(α) = P′(α)−Q(α)R′(α).

Let us also recall the definition (10) of divided difference operator. Then, expanding F′(x + th)
in (10) by Taylor series at the point x and thereafter integrating, we have that

[x + h, x ; F] =
∫ 1

0
F′(x + th) dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 +
1

24
F(iv)(x)h3 + O(h4), (24)

where hi = (h, h,
i· · · ·, h), h ∈ Rm. Let e(k) = x(k) − α. Assuming that Γ = F′(α)−1 exists,

then expanding F(x(k)) and its first three derivatives in a neighborhood of α by Taylor’s series,
we have that

F(x(k)) = F′(α)
(
e(k) + A2(e(k))2 + A3(e(k))3 + A4(e(k))4 + A5(e(k))5 + O((e(k))6)

)
, (25)

F′(x(k)) = F′(α)
(

I + 2A2e(k) + 3A3(e(k))2 + 4A4(e(k))3 + 5A5(e(k))4 + O((e(k))5)
)
, (26)

F′′(x(k)) = F′(α)
(
2A2 + 6A3e(k) + 12A4(e(k))2 + 20A5(e(k))3 + O((e(k))4)

)
(27)

and
F′′′(x(k)) = F′(α)

(
6A3 + 24A4e(k) + 60A5(e(k))2 + O((e(k))3)

)
, (28)

where Ai =
1
i! ΓF(i)(α) ∈ Li(Rm,Rm) and (e(k))i = (e(k), e(k),

i−times· · · · , e(k)), e(k) ∈ Rm.
We are in a situation to analyze the behavior of Traub-Steffensen-like method. Thus, the following

theorem is proved:

Theorem 1. Let F : D ⊂ Rm → Rm be sufficiently Fréchet differentiable at each point of an open convex set
D of α ∈ Rm, which is a solution of F(x) = 0. Assume that x ∈ S = S̄(α, ε) and F′(x) is continuous and
nonsingular at α, and x(0) close to α. Then, α is a point of attraction of the sequence {x(k)} generated by the
Traub-Steffensen-like method (22). Furthermore, the sequence so developed converges locally to α with order at
least 5.

Proof. First we show that α is a point of attraction of Traub-Steffensen-like iteration. In this case,
we have that

P(x) = z(x), Q(x) = H(x)[w, x ; F]−1, R(x) = F(z(x)).

Now, since F(α) = 0, [α, α ; F] = F′(α) 6= O, we have

y(α) = α− [α, α ; F]−1F(α) = α− F′(α)−1F(α) = α,

z(α) = α− [α, α ; F]−1F(α)− [α, α ; F]−1F(α) = α− F′(α)−1F(α)− F′(α)−1F(α) = α,

H(α) = 2I − [α, α ; F]−1[α, α ; F] = I,

P(α) = z(α), P′(α) = z′(α),
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Q(α) = H(α)[α, α ; F]−1 = I [α, α ; F]−1 = [α, α ; F]−1 = F′(α)−1 6= O,

R(α) = F(z(α)) = F(α) = 0,

R′(α) = F′(z(α))z′(α) = F′(α)z′(α),

M′(α) = P′(α)−Q(α)R′(α) = z′(α)− F′(α)−1F′(α)z′(α) = O,

so that ρ(M′(α)) = 0 < 1 and by Lemma 1, α is a point of attraction of (22).
Let e(k)w = w(k) − α = x(k) + βF(x(k))− α = e(k) + βF(x(k)). Then using (25), it follows that

e(k)w = (I + βF′(α))e(k) + βF′(α)
(
(A2(e(k))2 + A3(e(k))3) + O((e(k))4). (29)

Setting x + h = w(k), x = x(k), h = e(k)w − e(k) in Equation (24) and then using (26)–(29),
we can write

[w(k), x(k) ; F] = F′(α)
(

I + X1 A2e(k) + (λA2
2 + X2 A3)(e(k))2 + X1(2λA2 A3

+ X3 A4)(e(k))3 + O((e(k))4)
)
, (30)

where λ = βF′(α), X1 = λ + 2, X2 = λ2 + 3λ + 3 and X3 = λ2 + 2λ + 2.
Expansion of the inverse of preceding divided difference operator is given as

[w(k), x(k) ; F]−1 =
(

I − X1 A2(e(k)) + ((1 + X2)A2
2 − X2 A3)(e(k))2 − X1((2 + X3)A3

2

− 2(1 + X3)A2 A3 + X3 A4)(e(k))3 + O((e(k))3)
)
Γ. (31)

By using (25) and (31) in the first step of method (22), we get

e(k)y = y(k) − α = (−1 + X1)A2(e(k))2 − (X3 A2
2 + (1− X2)A3)(e(k))3 + O((e(k))4). (32)

Taylor expansion of F(yk) about α yields,

F(y(k)) = F′(α)
(
e(k)y + A2(e

(k)
y )2 + O((e(k)y )3)

)
. (33)

From the second step of (22), on using (31) and (33), it follows that

e(k)z = z(k) − α

= X1 A2(e(k))e
(k)
y − A2(e

(k)
y )2 − ((1 + X2)A2

2 − X2 A3)(e(k))2e(k)y + O((e(k))5). (34)

By Taylor expansion of F(zk) about α,

F(z(k)) = F′(α)
(
e(k)z + A2(e

(k)
z )2 + O((e(k)z )3)

)
. (35)

Equation (24), for x + h = z(k), x = y(k) and h = e(k)z − e(k)y , yields

[z(k), y(k) ; F] =F′(α)
(

I + A2(e
(k)
z + e(k)y ) + O((e(k))3)

)
=F′(α)

(
I + (λ + 1)A2

2(e
(k))2 + O((e(k))3)

)
. (36)

From (31) and (36), we have

H(x(k)) = 2I − [w(k), x(k) ; F]−1[z(k), y(k) ; F]

= I + X1 A2e(k) +
(
X2 A3 − (X1 + X2)A2

2
)
(e(k))2 + O((e(k))3). (37)
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Equations (31) and (37) yield

H(x(k))[w(k), x(k) ; F]−1 =
(

I − (λ2 + 5λ + 5)A2
2(e

(k))2 + O((e(k))3)
)
Γ. (38)

Applying Equations (34), (35) and (38) in the last step of method (22) and then simplifying, we get
the error equation

e(k+1) = (λ + 1)(λ + 2)(λ2 + 5λ + 5)A4
2(e

(k))5 + O((e(k))6). (39)

This completes the proof of Theorem 1.

Thus, the Traub-Steffensen-like method (22) defines a one-parameter (β) family of derivative-free
fifth order methods. Now onwards we denote it by M5,1. In terms of computational cost M5,1 utilizes
four functions, two divided difference and one matrix inversion per each step. In the next section we
will compare the computational efficiency of the new method with the existing derivative-free methods.

4. Computational Efficiency

In order to find the computational efficiency we will use the definition given in Section 2.3.
The various evaluations and arithmetic operations that contribute towards the cost of computation
are described as follows. For the computation of F in any iterative function we evaluate m scalar
functions fi , (1 ≤ i ≤ m) and when computing a divided difference [x, y ; F] (see, Section 2.2) we
evaluate m(m− 1) scalar functions, wherein F(x) and F(y) are evaluated separately. Furthermore, one
has to add m2 divisions from any divided difference. For the computation of inverse linear operator,
a linear system can be solved that requires m(m− 1)(2m− 1)/6 products and m(m− 1)/2 divisions
in the LU decomposition process, and m(m− 1) products and m divisions in the resolution of two
triangular linear systems. Moreover, we add m products for the multiplication of a vector by a scalar
and m2 products for multiplying a matrix by a vector or of a matrix by a scalar.

The comparison of computational efficiency of the present method M5,1 is drawn with second
order method M2,1; third order method M3,1; fourth order methods by Ren et al. [11], Grau et al. [13]
and Sharma-Arora [14]; fifth order method by Kumar et al. [25]; sixth order method by Grau et al. [13];
seventh order methods by Sharma-Arora [15] and Wang-Zhang [16]. These methods are expressed
as follows:

Fourth order method by Ren et al. (M4,1):

y(k) = x(k) − [u(k), x(k) ; F]−1F(x(k)),

x(k+1) = y(k) −
(
[y(k), x(k) ; F] + [y(k), u(k) ; F]− [u(k), x(k) ; F]

)−1F(y(k)),

where u(k) = x(k) + F(x(k)).

Fourth order method by Grau et al. (M4,2):

y(k) = x(k) − [u(k), v(k) ; F]−1F(x(k))

x(k+1) = y(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(y(k)),

where u = x + F(x) and v = x− F(x).

Sharma-Arora fourth order method (M4,3):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

x(k+1) = y(k) −
(
3I − [w(k), x(k) ; F]−1([y(k), x(k) ; F] + [y(k), w(k) ; F])

)
× [w(k), x(k) ; F]−1F(y(k)),
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where w(k) = x(k) + βF(x(k)), β is a non-zero constant.

Fifth order method by Kumar et al. (M5,2):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

z(k) = y(k) − [w(k), x(k) ; F]−1F(y(k))

x(k+1) = z(k) − [x(k), y(k) ; F]−1[w(k), x(k) ; F][w(k), y(k) ; F]−1F(z(k)),

where w(k) = x(k) + F(x(k)).

Sixth order method by Grau et al. (M6,1):

y(k) = x(k) − [u(k), v(k) ; F]−1F(x(k))

z(k) = y(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(y(k))

x(k+1) = z(k) −
(
2[y(k), x(k) ; F]− [u(k), v(k) ; F]

)−1F(z(k)).

Wang-Zhang seventh order method (M7,1):

y(k) = x(k) − [u(k), x(k) ; F]−1F(x(k)),

z(k) = y(k) −
(
[y(k), x(k) ; F] + [y(k), u(k) ; F]− [u(k), x(k) ; F]

)−1F(y(k))

x(k+1) = z(k) −
(
[z(k), x(k) ; F] + [z(k), y(k) ; F]− [y(k), x(k) ; F]

)−1F(z(k)),

where u(k) = x(k) + F(x(k)).

Sharma-Arora seventh order method (M7,2):

y(k) = x(k) − [w(k), x(k) ; F]−1F(x(k))

z(k) = y(k) −
(
3I − [w(k), x(k) ; F]−1([y(k), x(k) ; F] + [y(k), w(k) ; F])

)
× [w(k), x(k) ; F]−1F(y(k))

x(k+1) = z(k) − [z(k), y(k) ; F]−1([w(k), x(k) ; F] + [y(k), x(k) ; F]− [z(k), x(k) ; F]
)

× [w(k), x(k) ; F]−1F(z(k)).

Let us denote efficiency indices of the methods Mp,i by Ep,i and their computational costs by Cp,i.
Then, using the definition of the Section 2.3 taking into account the above considerations of evaluations
and operations, we have that

C2,1 =
1
3

m3 + 3m2 +
2
3

m and E2,1 = 21/C2,1 . (40)

C3,1 =
1
3

m3 + 4m2 +
5
3

m and E3,1 = 31/C3,1 . (41)

C4,1 =
2
3

m3 + 8m2 − 2
3

m and E4,1 = 41/C4,1 . (42)

C4,2 =
2
3

m3 + 7m2 +
4
3

m and E4,2 = 41/C4,2 . (43)

C4,3 =
1
3

m3 + 10m2 +
2
3

m and E4,3 = 41/C4,3 . (44)

C5,1 =
1
3

m3 + 9m2 +
8
3

m and E5,1 = 51/C5,1 . (45)

C5,2 = m3 + 11m2 and E5,2 = 51/C5,2 . (46)

C6,1 =
2
3

m3 + 8m2 +
7
3

m and E6,1 = 61/C6,1 . (47)
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C7,1 = m3 + 13m2 − 2m and E7,1 = 71/C7,1 . (48)

C7,2 =
2
3

m3 + 17m2 − 2
3

m and E7,2 = 71/C7,2 . (49)

To compare the efficiency of considered iterative methods, say Mp,i against Mq,j, we consider
the ratio

Rp,i;q,j =
log Ep,i

log Eq,j
=

Cq,j log(p)
Cp,i log(q)

. (50)

It is clear that when Rp,i;q,j > 1, the iterative method Mp,i is more efficient than Mq,j.

M3,1 versus M2,1 case:

For this case the ratio (50) is given by

R3,1;2,1 =

( 1
3 m3 + 3m2 + 2

3 m
)

log(3)( 1
3 m3 + 4m2 + 5

3 m
)

log(2)
.

It can be easily shown that R3,1;2,1 > 1 for m ≥ 2. This implies that E3,1 > E2,1 for m ≥ 2. Thus,
M3,1 is more efficient than M2,1 as we have stated in the introduction section.

M5,1 versus M2,1 case:

The ratio
(
50
)

is given by

R5,1;2,1 =

( 1
3 m3 + 3m2 + 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(2)
.

It is easy to prove that R5,1;2,1 > 1 for m ≥ 6. Thus, we conclude that E5,1 > E2,1 for m ≥ 6.

M5,1 versus M3,1 case:

The ratio
(
50
)

is given by

R5,1;3,1 =

( 1
3 m3 + 4m2 + 5

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(3)
.

It can be checked that R5,1;3,1 > 1 for m ≥ 21. Thus, we have that E5,1 > E3,1 for m ≥ 21.

M5,1 versus M4,1 case:

In this case the ratio

R5,1;4,1 =

( 2
3 m3 + 8m2 − 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,

for m ≥ 3, which implies that E5,1 > E4,1 for m ≥ 3.

M5,1 versus M4,2 case:

Here the ratio

R5,1;4,2 =

( 2
3 m3 + 7m2 + 4

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,

for m ≥ 3 which implies that E5,1 > E4,2 for m ≥ 3.

M5,1 versus M4,3 case:

Here the ratio

R5,1;4,3 =

( 1
3 m3 + 10m2 + 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(4)
> 1,
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for m ≥ 2 which implies that E5,1 > E4,3 for m ≥ 2.

M5,1 versus M5,2 case:

In this case the ratio

R5,1;5,2 =
m3 + 11m2

1
3 m3 + 9m2 + 8

3 m
> 1,

for m ≥ 2 which means E5,1 > E5,2 for m ≥ 2.

M5,1 versus M6,1 case:

Here the ratio

R5,1;6,1 =

( 2
3 m3 + 8m2 + 7

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(6)
> 1,

for m ≥ 8 which means E5,1 > E6,1 for m ≥ 8.

M5,1 versus M7,1 case:

Here also the ratio

R5,1;7,1 =

(
m3 + 13m2 − 2m

)
log(5)( 1

3 m3 + 9m2 + 8
3 m
)

log(7)
> 1,

for m ≥ 2 which means E5,1 > E7,1 for m ≥ 2.

M5,1 versus M7,2 case:

Here also the ratio

R5,1;7,2 =

( 2
3 m3 + 17m2 − 2

3 m
)

log(5)( 1
3 m3 + 9m2 + 8

3 m
)

log(7)
> 1,

for m ≥ 2 which means E5,1 > E7,2 for m ≥ 2.

The above results are summarized in the following theorem:

Theorem 2. We have that

(a) E5,1 > E2,1 f or m ≥ 6.
(b) E5,1 > E3,1 f or m ≥ 21.
(c)

{
E5,1 > E4,1 E5,1 > E4,2

}
f or m ≥ 3.

(d)
{

E3,1 > E2,1, E5,1 > E4,3, E5,1 > E5,2, E5,1 > E7,1, E5,1 > E7,2
}

f or m ≥ 2.
(e) E5,1 > E6,1 f or m ≥ 8.

5. Complex Dynamics of Methods

Our aim is to analyze the complex dynamics of the new method based on graphical tool ‘basins
of attraction’ of the zeros of polynomial P(z) in complex plane. Visual display of the basins gives
important information about the stability and convergence of iterative methods. This idea was
introduced initially by Vrscay and Gilbert [26]. In recent times, many authors have used this concept
in their work, see, for example [27,28] and references therein. We consider the method (22) to analyze
the basins of attraction.

To start with we take the initial point z0 in a rectangular region R ∈ C that contains all the zeros of
a polynomial P(z). The iterative method, when starting from point z0 in a rectangle, either converges
to the zero P(z) or eventually diverges. Stopping condition for convergence is considered as 10−3 to
a maximum of 25 iterations. If the required tolerance is not achieved in 25 iterations, we conclude
that the iterative scheme starting at point z0 does not converge to any root. The strategy adopted is as
follows: A color is allocated to each initial point z0 in the basin of attraction of a zero. If the iteration
initiating at z0 converges, then it represents the attraction basin with that assigned color to it, otherwise
in the failing (divergence) situation in 25 iterations the iteration represents the black color.
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We analyze the basins of attraction of the new method (for the choices β = 10−2, 10−4, 10−8) on
following three polynomials:

Example 1. In the first case, consider the polynomial P1(z) = z2 − 1 which has zeros {±1}. A grid of
400× 400 points in a rectangle D ∈ C of size [−2, 2]× [−2, 2] is used for drawing the graphics. We assign
the color red to each initial point in the basin of attraction of zero ‘1’ and the color green to the points in the
basin of attraction of zero ‘−1’. The graphics are shown in Figure 1 corresponding to β = 10−2, 10−4, 10−8.
Observing the behavior of the basins of the new method, we conclude that the convergence domain becoming
wider as parameter β assumes smaller values since black zones (divergent points) are getting smaller in size.

-2. -1. 0. 1. 2.

2.

1.

0.

-1.

β = 10−2
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

β = 10−4
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

β = 10−8

Figure 1. Basins of attraction for polynomial P1(z).

Example 2. Let us consider the next polynomial as P2(z) = z3 − z having zeros {0,±1}. To draw the
dynamical view, we select a rectangle D = [−2, 2]× [−2, 2] ∈ C containing 400× 400 grid points. Then,
allocate the colors green, blue and red to each point in the basin of attraction of 0, 1 and −1, respectively. Basins
for this example are exhibited in Figure 2 corresponding to parameter choices β = 10−2, 10−4, 10−8 in the
proposed methods. In addition, observe that the basins are becoming larger and larger with the smaller values
of β.

-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

β = 10−2
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

β = 10−4
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

β = 10−8

Figure 2. Basins of attraction for polynomial P2(z).

Example 3. Lastly, we consider the polynomial as P3(z) = z5 + 2z − 1 having zeros {−0.945068 ±
0.854518i, 0.701874 ± 0.879697i, 0.486389}. To draw the dynamical view, we select a rectangle D =

[−2, 2] × [−2, 2] ∈ C containing 400 × 400 grid points. Then, allocate the colors green, blue, red,
yellow and pink to each point in the basin of attraction of 0.701874 + 0.879697i, −0.945068− 0.854518i,
0.701874− 0.879697i, 0.486389 and−0.945068+ 0.854518i, respectively. Basins for this example are exhibited
in Figure 3 corresponding to parameter choices β = 10−2, 10−4, 10−8 in the proposed methods. We observe
that the basins are getting larger with the smaller values of β.
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-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

β = 10−2
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-2.

β = 10−4
-2. -1. 0. 1. 2.

2.

1.

0.

-1.

-

β = 10−8

Figure 3. Basins of attraction for polynomial P3(z).

6. Numerical Tests

In this section, some numerical tests on different problems are performed to demonstrate the
convergence behavior and computational efficiency of the method M5,1. A comparison between the
performance of M5,1 with the existing methods M2,1, M3,1, M4,j (j = 1, 2, 3), M5,2, M6,1, M7,1 and M7,2

is also drawn. The programs are performed in the processor with specifications Intel (R) Core (TM)
i5-4210U CPU @ 1.70 GHz 2.40 GHz (64-bit Operating System) Microsoft Windows 10 Professional
and are complied by Mathematica 10.0 using multiple-precision arithmetic. We record the number of
iterations (k) required to converge to the solution such that the stopping condition

||x(k+1) − x(k)||+ ||F(x(k))|| < 10−300

is satisfied. In order to verify the theoretical order of convergence, the computational order of
convergence (pc) is obtained by using the Formula (8). In the comparison of performance of considered
methods, we also include the real CPU time elapsed during the execution of program computed by
the Mathematica command “TimeUsed[ ]”.

The methods M2,1, M3,1, M4,3, M5,1 and M7,2 are tested by using the value 0.01 for the parameter
β. In numerical experiments we consider the following five problems:

Example 4. Let us consider the system of two equations (selected from [29]):{
x2 + sin x− ey = 0,
3x− cos x− y = 0.

The initial guess assumed is x(0) = {−1,−2}T for obtaining the solution

α = {−0.90743021707369569 . . . ,−3.3380632251862363 . . .}T .

Example 5. Now considering the mixed Hammerstein integral equation (see [4]):

x(s) = 1 +
1
5

∫ 1

0
G(s, t)x(t)3dt,

wherein x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel G is

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.
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The above equation is transformed to a finite-dimensional problem by using the Gauss-Legendre
quadrature formula ∫ 1

0
f (t)dt ≈

m

∑
j=1

vj f (tj),

where the weights vj and abscissas tj are obtained for m = 8 by Gauss-Legendre quadrature formula. Then,
setting x(ti) = xi, i = 1, 2, ....., 8, we obtain the following system of nonlinear equations

5 xi − 5−
8

∑
j=1

aijx3
j = 0,

where

aij =


vjtj(1− ti) if j ≤ i,

i = 1, 2, .....8.
vjti(1− tj) if i < j,

wherein the abscissas tj and the weights vj are known and produced in Table 1 for m = 8. The initial
approximation assumed is

x(0) = {−1, −1, −1, −1, −1, −1, −1, −1}T

and the solution of this problem is:

α = {1.002096245031..., 1.009900316187..., 1.019726960993..., 1.026435743030...,

1.026435743030..., 1.019726960993..., 1.009900316187..., 1.002096245031...}T .

Table 1. Weights and abscissas of Gauss-Legendre quadrature formula for m = 8.

j tj vj

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

Example 6. Consider the system of 20 equations (see [29]):

tan−1 (xi) + 1− 2
20

∑
j=1,j 6=i

x2
j = 0, 1 ≤ i ≤ 20,

This problem has the following two solutions:

α1 = {0.1757683176158 . . . , 0.1757683176158 . . . , · · · · ·, 0.1757683176158 . . .}T .

and
α2 = {−0.14968543422 . . . ,−0.14968543422, . . . , · · · · ·,−0.14968543422 . . .}T .

We intend to find the first solution and so choose the initial value: x(0) = {0.5, 0.5, 0.5, · · · · ·, 0.5}T .
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Example 7. Consider the boundary value problem:

y′′ + y3 = 0, y(0) = 0, y(1) = 1.

Assuming the following partitioning of the interval [0, 1]:
u0 = 0 < u1 < u2 < · · · < un−1 < un = 1, uj+1 = uj + h, h = 1/n.

Setting y0 = y(u0) = 0, y1 = y(u1), · · · , yn−1 = y(un−1), yn = y(un) = 1. If we discretize the
problem by using the finite difference approximation for second derivative

y′′m =
ym−1 − 2ym + ym+1

h2 , m = 1, 2, 3, . . . , n− 1,

we obtain a system of n− 1 equations in n− 1 variables:

ym−1 − 2ym + ym+1 + h2y3
m = 0, m = 1, 2, 3, . . . , n− 1.

In particular, let us solve this problem for n = 51, that is for m = 50 by choosing y(0) =

{−1,−1,−1, · · · ,−1}T as the initial value. The solution vector α of this problem is

{0.02071138910 . . . , 0.04142277479 . . . , 0.06213413315 . . . , 0.08284539929 . . . , 0.10355644682 . . . ,
0.12426706739 . . . , 0.14497695018 . . . , 0.16568566142 . . . , 0.18639262397 . . . , 0.20709709683 . . . ,
0.22779815476 . . . , 0.24849466794 . . . , 0.26918528167 . . . , 0.28986839623 . . . , 0.31054214677 . . . ,
0.33120438344 . . . , 0.35185265167 . . . , 0.37248417270 . . . , 0.39309582441 . . . , 0.41368412246 . . . ,
0.43424520189 . . . , 0.45477479913 . . . , 0.47526823468 . . . , 0.49572039629 . . . , 0.51612572294 . . . ,
0.53647818972 . . . , 0.55677129350 . . . , 0.57699803975 . . . , 0.59715093054 . . . , 0.61722195374 . . . ,
0.63720257375 . . . , 0.65708372374 . . . , 0.67685579959 . . . , 0.69650865572 . . . , 0.71603160287 . . . ,
0.73541340802 . . . , 0.75464229671 . . . , 0.77370595761 . . . , 0.79259154985 . . . , 0.81128571300 . . . ,
0.82977457984 . . . , 0.84804379222 . . . , 0.86607851992 . . . , 0.88386348269 . . . , 0.90138297559 . . . ,

0.91862089765 . . . , 0.93556078378 . . . , 0.95218584022 . . . , 0.96847898326 . . . , 0.98442288125 . . .}T .

Example 8. Consider the following Burger’s equation (see [30]):

∂2 f
∂u2 + f

∂ f
∂u
− ∂ f

∂t
+ g(u, t) = 0, (u, t) ∈ [0, 1]2,

where g(u, t) = −10e−2t[et(2 − u + u2) + 10u(1 − 3u + 2u2)] and function f = f (u, t) satisfies the
boundary conditions

f (0, t) = f (1, t) = 0, f (u, 0) = 10u(u− 1) and f (u, 1) = 10u(u− 1)/e.

Assuming the following partitioning of the domain [0, 1]2:

0 =u0 < u1 < u2 < ......... < un−1 < un = 1, uk+1 = uk + h,

0 =t0 < t1 < t2 < ......... < tn−1 < tn = 1, tl+1 = tl + h, h = 1/n.

Let us define fk,l = f (uk, tl) and gk,l = g(uk, tl) for k, l = 0, 1, 2, .......n. Then the boundary conditions
would be f0,l = f (u0, tl) = 0, fn,l = f (un, tl) = 0, fk,0 = f (uk, t0) = 10uk(uk − 1) and fk,n = f (uk, tn) =

10uk(uk − 1)/e. If we discretize Burger’s equation by using the numerical formulas for the partial derivatives(
∂ f
∂u

)
i,j
=

fi+1,j − fi−1,j

2h
,
(

∂ f
∂t

)
i,j
=

fi,j+1 − fi,j−1

2h
,
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(
∂2 f
∂u2

)
i,j
=

fi+1,j − 2 fi,j + fi−1,j

h2 , i, j = 1, 2, ......n− 1,

then we obtain the following system of (n− 1)2 nonlinear equations in (n− 1)2 variables:

fi−1,j(2− h fi,j) + h( fi,j−1 − fi,j+1)− fi,j(4− h fi+1,j) + 2 fi+1,j + 2h2gi,j = 0, (51)

where i, j = 1, 2......n− 1. In particular, we solve this nonlinear system for n = 11 so that m = 100 by selecting
fi,j = 1 for i, j = 1, 2......10 as the initial value. The solution of this system of nonlinear equations is given in
Table 2.

Table 2. The solution of system (51) with the unknowns fi,j for i, j = 1, 2, ......10.

fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

−0.7546 . . . −0.6892 . . . −0.6290 . . . −0.5750 . . . −0.5236 . . . −0.4817 . . . −0.4306 . . . −0.4214 . . . −0.2583 . . . −0.3068 . . .
−1.3583 . . . −1.2405 . . . −1.1322 . . . −1.0351 . . . −0.9422 . . . −0.8675 . . . −0.7741 . . . −0.7598 . . . −0.4358 . . . −0.5505 . . .
−1.8111 . . . −1.6541 . . . −1.5096 . . . −1.3803 . . . −1.2559 . . . −1.1573 . . . −1.0309 . . . −1.0110 . . . −0.6951 . . . −0.7356 . . .
−2.1130 . . . −1.9298 . . . −1.7611 . . . −1.6106 . . . −1.4649 . . . −1.3511 . . . −1.2014 . . . −1.1768 . . . −0.8755 . . . −0.8606 . . .
−2.2639 . . . −2.0678 . . . −1.8869 . . . −1.7258 . . . −1.5690 . . . −1.4485 . . . −1.2860 . . . −1.2582 . . . −0.9783 . . . −0.9244 . . .
−2.2639 . . . −2.0678 . . . −1.8868 . . . −1.7261 . . . −1.5686 . . . −1.4494 . . . −1.2850 . . . −1.2558 . . . −1.0040 . . . −0.9268 . . .
−2.1129 . . . −1.9300 . . . −1.7609 . . . −1.6112 . . . −1.4637 . . . −1.3534 . . . −1.1987 . . . −1.1700 . . . −0.9534 . . . −0.8672 . . .
−1.8111 . . . −1.6544 . . . −1.5093 . . . −1.3812 . . . −1.2544 . . . −1.1604 . . . −1.0272 . . . −1.0010 . . . −0.8270 . . . −0.7454 . . .
−1.3583 . . . −1.2408 . . . −1.1320 . . . −1.0359 . . . −0.9407 . . . −0.8704 . . . −0.7706 . . . −0.7492 . . . −0.6255 . . . −0.5609 . . .
−0.7546 . . . −0.6893 . . . −0.6289 . . . −0.5755 . . . −0.5227 . . . −0.4834 . . . −0.4285 . . . −0.4152 . . . −0.3496 . . . −0.3128 . . .

In Tables 3–7 we present the numerical results produced for the methods
M2,1, M3,1, M4,j (j = 1, 2, 3), M5,1, M5,2, M6,1, M7,1 and M7,2. Displayed in each table are the
errors ||x(k+1) − x(k)|| of first three consecutive approximations to corresponding solution of
Examples 4–8, number of iterations (k) needed to converge to the required solution, computational
order of convergence pc, computational cost Cp,i, computational efficiency Ep,i and elapsed CPU-time
(e-time) measured in seconds. In each table the meaning of A(−h) is A× 10−h. Numerical values
of computational cost and efficiency are obtained according to the corresponding expressions given
by (40)–(49). The e-time is calculated by taking the average of 50 performances of the program, where
we use ||x(k+1) − x(k)||+ ||F(x(k))|| < 10−300 as the stopping condition in a single performance of
the program.

Table 3. Comparison of performance of methods for Example 4.

Methods ||x(2)− x(1)|| ||x(3)− x(2)|| ||x(4)− x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 9.94(−2) 4.45(−3) 7.14(−6) 9 2.000 16 1.04427 0.2887
M3,1(β = 0.01) 2.93(−2) 8.14(−6) 1.42(−16) 6 3.000 22 1.05120 0.2630
M4,1 3.73(−4) 1.71(−16) 6.94(−66) 5 4.000 36 1.03926 0.3234
M4,2 6.17(−2) 7.75(−7) 5.63(−27) 5 4.000 36 1.03926 0.3165
M4,3(β = 0.01) 5.35(−3) 2.42(−10) 7.56(−40) 5 4.000 44 1.03201 0.3362
M5,1(β = 0.01) 1.76(−3) 4.72(−15) 4.11(−73) 4 5.000 44 1.03726 0.3297
M5,2 1.89(−3) 2.96(−15) 2.04(−74) 4 5.000 52 1.03143 0.3972
M6,1 2.97(−2) 8.66(−12) 1.81(−69) 4 6.000 42 1.04358 0.3120
M7,1 2.23(−7) 4.55(−52) 0.000 3 7.000 56 1.03536 0.3468
M7,2(β = 0.01) 7.93(−5) 4.14(−31) 3.40(−215) 3 7.000 72 1.02740 0.4125
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Table 4. Comparison of performance of methods for Example 5.

Methods ||x(2)− x(1)|| ||x(3)− x(2)|| ||x(4)− x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 0.202 1.44(−3) 7.18(−8) 9 2.000 368 1.001885 0.3437
M3,1(β = 0.01) 1.73(−3) 1.24(−11) 4.56(−36) 5 3.000 440 1.002500 0.2252
M4,1 0.276 6.19(−6) 1.36(−24) 5 4.000 848 1.001636 0.3532
M4,2 9.94(−2) 4.12(−8) 1.23(−33) 5 4.000 800 1.001734 0.3562
M4,3(β = 0.01) 1.86(−2) 4.72(−11) 2.06(−45) 5 4.000 816 1.001700 0.2749
M5,1(β = 0.01) 1.20(−5) 3.49(−30) 7.35(−153) 4 5.000 768 1.002098 0.2312
M5,2 4.50(−2) 1.98(−11) 3.74(−58) 5 5.000 1216 1.001324 0.4234
M6,1 1.39(−2) 3.84(−17) 1.86(−104) 4 6.000 872 1.002057 0.3063
M7,1 1.12(−2) 7.70(−21) 6.01(−148) 4 7.000 1328 1.001467 0.3862
M7,2(β = 0.01) 8.66(−5) 4.24(−36) 3.01(−255) 4 7.000 1424 1.001367 0.3625

Table 5. Comparison of performance of methods for Example 6.

Methods ||x(2)− x(1)|| ||x(3)− x(2)|| ||x(4)− x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 0.336 5.87(−2) 2.05(−3) 10 2.000 3880 1.0001787 4.2530
M3,1(β = 0.01) 0.209 4.29(−3) 6.08(−8) 7 3.000 4300 1.0002555 3.3061
* M4,1 0.370 2.50(−2) 1.37 18 4.000 8520 1.0001627 15.469
M4,2 8.97(−2) 1.02(−5) 2.23(−21) 5 4.000 8160 1.0001699 3.4542
M4,3(β = 0.01) 0.133 2.18(−4) 2.85(−15) 6 4.000 6680 1.0002076 3.8634
M5,1(β = 0.01) 8.15(−2) 3.67(−6) 1.08(−27) 5 5.000 6320 1.0002547 3.3176
M5,2 0.434 7.70(−2) 1.33(−2) 7 5.000 12,400 1.0001298 7.2054
M6,1 3.16(−2) 1.38(−10) 1.12(−60) 4 6.000 8580 1.0002089 3.3585
* M7,1 1.572 3.42(−4) 7.60(−25) 5 7.000 13,160 1.0001478 5.7346
M7,2(β = 0.01) 1.96(−2) 6.66(−13) 3.92(−86) 4 7.000 12,120 1.0001606 4.3594

* The methods M4,1 and M7,1 converge to the solution α2.

Table 6. Comparison of performance of methods for Example 7.

Methods ||x(2)− x(1)|| ||x(3)− x(2)|| ||x(4)− x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 3.828 0.681 1.23(−2) 9 2.000 49,200 1.00001409 0.8928
M3,1(β = 0.01) 0.433 9.62(−5) 1.74(−15) 6 3.000 51,750 1.00002123 0.7183
M4,1 0.840 9.07(−5) 9.18(−21) 5 4.000 103,300 1.00001342 1.0475
M4,2 0.848 9.54(−5) 1.13(−20) 5 4.000 100,900 1.00001374 1.1896
M4,3(β = 0.01) 1.548 3.85(−3) 5.75(−14) 6 4.000 66,700 1.00002078 0.8284
M5,1(β = 0.01) 4.06(−2) 1.22(−12) 2.82(−65) 4 5.000 64,300 1.00002503 0.6102
M5,2 8.16(−2) 3.64(−11) 7.86(−58) 5 5.000 152,500 1.00001055 1.6563
M6,1 0.159 1.20(−11) 2.24(−72) 6 6.000 103,450 1.00001732 1.0313
M7,1 9.92(−2) 1.26(−15) 7.09(−113) 4 7.000 157,400 1.00001236 1.3457
M7,2(β = 0.01) 0.212 6.80(−13) 3.00(−93) 4 7.000 125,800 1.00001547 1.0938
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Table 7. Comparison of performance of methods for Example 8.

Methods ||x(2)− x(1)|| ||x(3)− x(2)|| ||x(4)− x(3)|| k pc Cp,i Ep,i e-Time

M2,1(β = 0.01) 1.980 1.78(−2) 2.66(−6) 9 2.000 363,400 1.000001907 7.6572
M3,1(β = 0.01) 0.951 1.31(−4) 4.43(−16) 6 3.000 373,500 1.000002941 5.9846
M4,1 0.158 8.95(−8) 2.27(−25) 6 2.997 746,600 1.000001471 10.503
M4,2 0.418 8.99(−6) 2.28(−19) 6 3.000 736,800 1.000001491 10.249
M4,3(β = 0.01) 0.453 5.14(−6) 9.22(−21) 6 3.001 433,400 1.000002535 6.5627
M5,1(β = 0.01) 0.137 3.08(−12) 3.28(−65) 4 5.001 423,600 1.000003815 4.8255
M5,2 3.12(−2) 5.16(−13) 3.86(−55) 5 3.999 1,110,000 1.000001450 10.876
M6,1 8.38(−2) 6.04(−11) 9.18(−46) 5 4.001 746,900 1.000001856 9.2656
M7,1 1.75(−4) 1.74(−34) 4.89(−213) 4 5.999 1,129,800 1.000001586 10.235
M7,2(β = 0.01) 3.83(−3) 5.44(−25) 1.65(−155) 4 5.996 836,600 1.000002142 8.4533

From the numerical results displayed in Tables 3–7, it can be observed that like that of the existing
methods the proposed new method shows consistent convergence behavior. Seventh order methods
produce approximations with large accuracy due to their higher order of convergence, but they are
less efficient. In Example 6, M4,1 and M7,1 do not converge to the required solution α1. Instead, they
converge to solution α2 which is far off from initial approximation chosen. Calculation of computational
order of convergence shows that the order of convergence of the new method is preserved in all the
numerical examples. However, this is not true for some existing methods, e.g., M4,j (j = 1, 2, 3), M5,2,
M6,1, M7,1 and M7,2, in Example 8. Values of the efficiency index shown in the penultimate column
of each table also verify the theoretical results stated in Theorem 2. The efficiency results are also in
complete agreement with the CPU time utilized in the execution of the program since the method
with large efficiency uses less computing time than the method with small efficiency. Moreover, the
proposed method utilizes less CPU time than existing higher order methods which points to the
dominance of the method. In fact, the new method is especially more efficient for large systems of
nonlinear equations.

7. Conclusions

In the foregoing study, we have developed a fifth order iterative method for approximating
solution of systems of nonlinear equations. The methodology is based on third order Traub-Steffensen
method and further developed by using derivative free modification of classical Chebyshev’s method.
The iterative scheme is totally derivative-free and so particularly suitable to those problems where
derivatives are lengthy to compute. To prove the local fifth order of convergence for the new method, a
development of first-order divided difference operator and direct computation by Taylor’s expansion
are used.

We have examined the computational efficiency of the new method. A comparison of efficiencies
with that of the existing most efficient methods is also performed. It is proved that, in general, the new
algorithm is more efficient. Numerical experiments are performed and the performance is compared
with existing derivative-free methods. From numerical results it has been observed that the proposed
method has equal or better convergence compared to existing methods. Theoretical results related to
convergence order and computational efficiency have also been verified in the considered numerical
problems. Similar numerical tests, performed for a variety of other different problems, have confirmed
the above drawn conclusions to a good extent.
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