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Abstract: We propose a novel family of seventh-order iterative methods for computing multiple
zeros of a nonlinear function. The algorithm consists of three steps, of which the first two are the
steps of recently developed Liu–Zhou fourth-order method, whereas the third step is based on a
Newton-like step. The efficiency index of the proposed scheme is 1.627, which is better than the
efficiency index 1.587 of the basic Liu–Zhou fourth-order method. In this sense, the proposed iteration
is the modification over the Liu–Zhou iteration. Theoretical results are fully studied including the
main theorem of local convergence analysis. Moreover, convergence domains are also assessed
using the graphical tool, namely, basins of attraction which are symmetrical through the fractal
like boundaries. Accuracy and computational efficiency are demonstrated by implementing the
algorithms on different numerical problems. Comparison of numerical experiments shows that the
new methods have an edge over the existing methods.
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1. Introduction

Approximating the solution of nonlinear equations by numerical methods is an important problem
in many branches of science and engineering. For example, problems from many areas such as Physics,
Chemistry, Mathematical Biology, and Engineering science are reduced to finding solution of nonlinear
equations [1–4]. In general, closed form solutions can not be obtained so researchers use iterative
methods for approximating the solution. In this paper, our aim is to construct higher order multi-point
iterative methods for the multiple zeros of the univariate function f (x), where f : C→ C is analytic
about the required zero. The advantages of multi-point methods over one-point methods are discussed
in Traub’s well-known book [4].

Many higher-order methods, with or without using the classical Newton’s method [5]

xn+1 = xn −m
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1)

are available in literature, see in [6–20]. Here, m is the multiplicity of a zero (say, α) of the function
f (x), i.e., f (j)(α) = 0, j = 0, 1, . . . , m− 1 and f (m)(α) 6= 0. Such methods require the evaluation of
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derivatives of either first-order or both first- and second-order. In particular, Liu and Zhou [13] have
recently proposed the following scheme of two-point Newton-like methods,

yn = xn −m
f (xn)

f ′(xn)
,

xn+1 = yn −mG(un)
f (xn)

f ′(xn)
, (2)

where un =
(

f ′(yn)
f ′(xn)

) 1
m−1

and G : C → C is a holomorphic function in neighborhood about zero.
They have shown that this iterative scheme attains fourth-order convergence provided that the function
G(u) satisfies the conditions

G(0) = 0, G′(0) = 1, G′′(0) =
4m

m− 1
, m 6= 1.

In this article, we aim to develop multiple root solvers of high efficiency, meaning the methods
with rapid convergence that require less computations. Proceeding in this way, we develop a family of
seventh-order three-point Newton-type methods for computing multiple zeros. The proposed iterative
scheme is the composition of three steps that uses the Liu–Zhou iteration (2) as the first two steps
and a Newton-type iteration in the third step. The algorithm requires four function evaluations per
iteration and, therefore, possesses the efficiency index 71/4 ≈ 1.627, which is better than the efficiency
index 41/3 ≈ 1.587 of the basic method (2). In this sense, the proposed iteration is the modification
over the iteration (2). Some special methods of the new family are established. The usefulness of
the methods is demonstrated by performing numerical tests on several applied science problems.
Thereby, we observe in each example that the new methods have far better numerical results than the
existing methods. The convergence domains are also assessed using the graphical tool, namely, basins
of attraction, which is an useful technique to check the convergence regions visually.

We summarize the contents of this article. In Section 2, the family of seventh-order iterative
solvers is derived and its local convergence is studied. In order to check the convergence regions of the
methods graphically, the basins of attractors are assessed in Section 3. Some numerical experiments
are performed in Section 4 to verify the theoretical results and to compare the performance with the
existing methods. In Section 5, concluding remarks are reported.

2. Development of Scheme

Our aim is to develop an iterative method for computing a multiple root with multiplicity m > 1,
which accelerates the convergence rate of the two-step Liu–Zhou iteration (2) using a minimum
number of functions and derivative evaluations. Thus, it will turn out to be judicious if we consider a
somewhat complicated three-step iterative scheme of the following form,

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mG(un)
f (xn)
f ′(xn)

,

xn+1 = zn −mvn

(
1 + a vn

un

)
H(un)

f (xn)
f ′(xn)

,

(3)

where u =
(

f ′(y)
f ′(x)

) 1
m−1

, v =
(

f (z)
f (x)

) 1
m

, a is scalar, and G, H : C → C are analytic functions about a

neighborhood of 0. Note that the second and third steps are weighted by the factors G(u) and H(u),
and, as a result, these are called weight factors or weight functions.

Note that u and v are one-to-m− 1 and one-to-m multi-valued functions, respectively. Therefore,
it is convenient to treat them as the principal root. As an example, we consider the case of v.
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The principal root is given by v = exp
[ 1

m Log
( f (z)

f (x)

)]
, with Log

( f (z)
f (x)

)
= Log

∣∣ f (z)
f (x)

∣∣ + i Arg
( f (z)

f (x)

)
for −π < Arg

( f (z)
f (x)

)
≤ π; this convention of Arg(Z) for Z ∈ C agrees with that of Log[Z] command

of Mathematica [21]. We employ this command in the later section of numerical simulation. Similarly,
we treat for u.

In the following theorem, we shall prove the seventh-order convergence of the proposed scheme (3).

Theorem 1. Let the function f : C → C be analytic in a domain containing multiple zero α of multiplicity
m. Suppose that the starter x0 is close enough to α. Then, the iterative technique expressed by (3) possesses
seventh-order convergence, provided that the functions G(u) and H(u) satisfy the conditions{

G(0) = 0, G′(0) = 1, G′′(0) = 4m
m−1

a = m−1
m , H(0) = 1, H′(0) = 2, H′′(0) = 2(m2−2m−1)

m(m−1) .
(4)

Proof. Let the error at n-th stage be en = xn − α. Using the Taylor’s expansion of f (xn) about α, we
have that

f (xn) =
f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)

(5)

and

f ′(xn) =
f (m)(α)

m!
em−1

n
(
m + C1(m + 1)en + C2(m + 2)e2

n + C3(m + 3)e3
n + C4(m + 4)e4

n

+ C5(m + 5)e5
n + C6(m + 6)e6

n + C7(m + 7)e7
n + O(e8

n)
)
, (6)

where Ck =
m!

(m+k)!
f (m+k)(α)

f (m)(α)
, k ∈ N.

From (5), (6), and the first step of (3), we have that

ēn = yn − α =
C1

m
e2

n +
5

∑
i=1

ωiei+2
n + O(e8

n), (7)

where ωi = ωi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7 with two explicitly written

coefficients, ω1 =
2mC2−(m+1)C2

1
m2 and ω2 = 1

m3

(
3m2C3 + (m + 1)2C3

1 −m(4+ 3m)C1C2
)
. The remaining

expressions of ωi (i = 3, 4, 5) are not being produced explicitly as these are very lengthy.
Expansion of f (yn) and f ′(yn) about α leads us to the expression

f (yn) =
f (m)(α)

m!
(ēn)

m(1 + C1 ēn + C2(ēn)
2 + C3(ēn)

3 + O((ēn)
4)
)

(8)

and

f ′(yn) =
f (m)(α)

m!
(ēn)

m−1(m + C1(m + 1)ēn + C2(m + 2)(ēn)
2 + C3(m + 3)(ēn)

3 + O((ēn)
4)
)
. (9)

By using (6) and (9), we get expression of un as

un =
C1

m
en +

2C2(m− 1)− C2
1(m + 1)

m(m− 1)
e2

n +
5

∑
i=1

ηiei+2
n + O(e8

n), (10)

where ηi = ηi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7 with one explicitly written
coefficient, η1 = 1

2m3(m−1)2

(
C3

1(2m4 + 3m3 + 2m2 −m− 2)− 2m2(3m2 + m− 4)C1C2 + 6(m− 1)2m2C3)
)
.
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Expanding the function G(u) about origin using Taylor series

G(un) ≈ G(0) + unG′(0) +
1
2

u2G′′(0) + O(u3
n). (11)

By inserting the expressions (5), (6), and (11) in the second step of scheme (3) and simplifying,

zn − α = −G(0)en +
1 + G(0)− G′(0)

m
C1e2

n +
4

∑
i=1

γiei+2
n + O(e8

n), (12)

where γi = γi(m, G(0), G′(0), C1, C2, . . . , C7).
In order to obtain higher order convergence, the coefficients of en, e2

n, and e3
n should vanish.

The resulting equations yield

G(0) = 0, G′(0) = 1 G′′(0) =
4m

m− 1
. (13)

Combining Equations (12) and (13), we obtain that

zn − α =
(2 + m + 8m2 + m3)C3

1 − 2(m− 1)m2C1C2

2m3(m− 1)2 e4
n +

3

∑
i=1

γiei+4
n + O(e8

n). (14)

Developing f (zn) about α, it follows that

f (zn) =
f (m)(α)

m!
(zn − α)m(1 + C1(zn − α) + C2(zn − α)2 + O((zn − α)3)

)
. (15)

Inserting (5) and (15) in the expression of vn, then

vn =
(2 + m + 8m2 + m3)C3

1 − 2m2(m− 1)C1C2

2m3(m− 1)
e3

n +
4

∑
i=1

τiei+3
n + O(e8

n), (16)

where τi = τi(m, C1, C2, . . . , C7).
The Taylor expansion of H(un) about origin 0 is given by

H(un) ≈ H(0) + unH′(0) +
u2

n
2

H′′(0). (17)

Therefore, by substituting (5), (6), (10), (16), and (17) into the last step of scheme (3), we obtain the
error equation

en+1 = −
(1 + H(0))C1

((
2 + m + 8m2 + m3)C2

1 − 2
(
m− 1)m2C2

))
2m3(m− 1)2 e4

n +
3

∑
i=1

ξiei+4
n + O(e8

n), (18)

where ξi = ξi(m, H(0), H′(0), H′′(0), C1, C2, . . . , C7).
Error Equation (18) shows that at least fifth-order convergence is attained if H(0) = 1. Using this

value in ξ1 = 0, we will obtain
H′(0) = 2.

Then, using H(0) = 1 and H′(0) = 2 in ξ2 = 0, the following equation is obtained,

C1
((

2 + m + 8m2 + m3)C2
1 − 2(−1 + m)m2C2

)(
− 2m(m− 1)(1 + (−1 + a)m)C2

+ C2
1
(
a(2 + m + 8m2 + m3)− (−1 + m)(−3 + m2 −m(−10 + H′′(0)) + H′′(0)

)))
= 0, (19)
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which further yields

a =
m− 1

m
and H′′(0) =

2(m2 − 2m− 1)
m(m− 1)

. (20)

Combining (20) with (18), we obtain the final error equation,

en+1 =
1

6m7(m− 1)4

(
C2

1
(
(−6− 25m− 87m2 − 99m3 − 204m4 + 49m5 + 33m6 + 3m7)C4

1

− 4m(3 + 3m + 10m2 + 9m3 − 40m4 + 12m5 + 3m6)C2
1C2 + 12(−1 + m)2m3(−1−m + m2)C2

2

)
e7

n

+ O(e8
n). (21)

Therefore, the seventh-order convergence is established.

Remark 1. The computational efficiency (E) is computed as E = p1/θ (see [22]), where p denotes the
convergence order of the iterative method and θ denotes the number of function evaluations per iteration
(see in [22]). With the conditions (4) the proposed scheme (3) reaches seventh-order convergence by using only
four functional evaluations (viz. f (xn), f (zn), f ′(xn), and f ′(yn)) per iteration. Thus, the E-value of the new
scheme is 71/4 ≈ 1.627, which is much better than the E-values of Newton’s method (E = 21/2 ≈ 1.414),
the fourth-order Liu–Zhou method (E = 41/3 ≈ 1.587), and sixth-order methods by Geum et al. [8,9]
(E = 61/4 ≈ 1.565).

Remark 2. Kung and Traub [23] have conjectured that the multi-point methods without memory requiring n
functional evaluations can attain the maximum convergence order 2n−1. That means that with four functional
evaluations one can develop a method of optimal order eight. The methods qualifying Kung–Traub hypothesis
are also called optimal methods. Such methods are rare for multiple roots due to the complexity in finding the
convergence order. Nevertheless, the proposed seventh methods are better than the existing sixth-order methods
by Geum et al. [8] (see Formula (30) in the numerical section) in the sense that latter also require same number
of evaluations, i.e., two functions and two derivatives.

Remark 3. The proposed algorithm requires the knowledge of multiplicity m of a root. To estimate m, we can
employ the formula

m ≈ xn+1 − xn

F(xn+1)− F(xn)
,

wherein F(xn) =
f (xn)
f ′(xn)

(see [24]).

Some Special Cases

We can generate numerous special cases of the family (3) based on the forms of weight functions
G(u) and H(u) that satisfy the conditions of Theorem 1. Some simple forms are given as follows,
Case I: Let us describe the following polynomial forms of G and H directly from the proposed Theorem 1:

G(u) = u +
2m

m− 1
u2 and H(u) = 1 + 2u +

m2 − 2m− 1
m(m− 1)

u2. (22)

Thus, the corresponding new seventh-order method (denoted by NM-I) is given by

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −m
(
un +

2m
m−1 u2

n
) f (xn)

f ′(xn)
,

xn+1 = zn −mvn

(
1 + m−1

m
vn
un

)(
1 + 2un +

m2−2m−1
m(m−1) u2

n

)
f (xn)
f ′(xn)

.

(23)



Symmetry 2020, 12, 1494 6 of 13

Case II: Let us describe the following functions that satisfy the conditions of Theorem 1:

G(u) = u
( 1 + u

1 + 1+m
1−m u + 2m(m+1)

(m−1)2 u2

)
and H(u) = 1 + 2u +

m2 − 2m− 1
m(m− 1)

u2. (24)

Thus, the corresponding seventh-order method (now denoted by NM-II) is expressed as

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mun

(
1+un

1+ 1+m
1−m un+

2m(m+1)
(m−1)2

u2
n

)
f (xn)
f ′(xn)

,

xn+1 = zn −mvn

(
1 + m−1

m
vn
un

)(
1 + 2un +

m2−2m−1
m(m−1) u2

n

)
f (xn)
f ′(xn)

.

(25)

Case III: Let us consider the following forms satisfying the conditions of Theorem 1:

G(u) = u
(1 + 1−2m+5m2

2m(m−1) u + u2

1 + m−1
2m u

)
and H(u) = 1 + 2u +

m2 − 2m− 1
m(m− 1)

u2. (26)

The corresponding new method (denoted by NM-III) is given by

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mun

( 1+ 1−2m+5m2
2m(m−1) un+u2

n

1+ m−1
2m un

)
f (xn)
f ′(xn)

,

xn+1 = zn −mvn

(
1 + m−1

m
vn
un

)(
1 + 2un +

m2−2m−1
m(m−1) u2

n

)
f (xn)
f ′(xn)

.

(27)

Case IV: Next, let us consider the following forms satisfying the conditions of Theorem 1:

G(u) = u
(

1− mu
m− 1

+
3m2u2

2(m− 1)2

)−2
and H(u) = 1 + 2u +

m2 − 2m− 1
m(m− 1)

u2. (28)

Then, the corresponding seventh-order iterative scheme (denoted by NM-IV) is given by

yn = xn −m f (xn)
f ′(xn)

,

zn = yn −mun

(
1− mu

m−1 + 3m2u2
n

2(m−1)2

)−2 f (xn)
f ′(xn)

,

xn+1 = zn −mvn

(
1 + m−1

m
vn
un

)(
1 + 2un +

m2−2m−1
m(m−1) u2

n

)
f (xn)
f ′(xn)

.

(29)

3. Complex Geometry of Methods

Here, we aim to assess the complex dynamics of new methods based on the geometrical technique,
namely, basins of attraction, of the zeros of a polynomial f (z) in complex domain. Using this tool,
one can get an important information about the stability and convergence of a method. The idea was
introduced initially by Vrscay and Gilbert [25]. Recently, many authors have used this tool in their
work, see, for example, in [2,26,27] and the references cited therein.

The initial point z0 is chosen in a rectangular region R ∈ C containing all the zeros of f (z). Starting
from the point z0, the method either converges to the zero of f (z) or eventually diverges. We choose
the tolerance value 10−3 up to maximum 25 iterations to stop the iteration process. If this tolerance is
not attained in required iterations, then the method does not converge to any root. To plot the basins,
we adopt the following strategy. A color is assigned to each point z0 lying in the basin of corresponding
root. Then, the point represents the attraction basin with that particular color provided that the method
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converges. Contrary to this, if the method fails to converge in specified iterations, then the point paints
the black color.

In what follows we assess the basins of attraction by employing the methods NM-I–NM-IV on
the following three polynomials.

Problem 1. As the first example, consider the polynomial f1(z) = (z3 + 4z)3 which has zeros {0,±2i} each
with multiplicity 3. For drawing basins, we use a rectangle R of size [−3, 3]× [−3, 3] and fix the color green to
each initial point in the basin of zero “−0”, the color red to each point in the basin of zero “2i”, and the color
blue to every point in the basin of zero “−2i”. Basins so drawn for the methods NM-I–NM-IV are shown in
Figure 1. It is clear that the methods NM-IV and NM-II posses fewer divergent points (painted with black color),
followed by NM-I and NM-III.

-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-I.
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-II.
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

NM-III.
-3. -1.5 0. 1.5 3.

3.

1.5

0.

-1.5

-

NM-IV.

Figure 1. Basins of attraction of methods NM-I–NM-IV for polynomial f1(z).

Problem 2. Consider the polynomial f2(z) = (z4 − 6z2 + 8)2 that has four zeros {±2,±1.414 . . .} with
multiplicity two. In this case also, we use a rectangle R ∈ C of size [−3, 3]× [−3, 3] and paint the basins with
blue, yellow, red, and green colors of the zeros 2, −2, 1.414 . . ., and −1.414 . . ., respectively. From the graphics
displayed in Figure 2, we conclude that the methods NM-II and NM-IV have better convergence than NM-I
and NM-III.

-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-I.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-

NM-II.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-III.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-IV.

Figure 2. Basins of attraction of methods NM-I–NM-IV for polynomial f2(z).

Problem 3. Lastly, consider the polynomial f3(z) = z2(z2− 4)2(z2− 2z + 2)2 that has five zeros {0,±2, 1±
i} each with multiplicity two. We use a rectangle R ∈ C of size [−3, 3]× [−3, 3] and assign the red, blue, green,
cyan, and yellow colors to the basins of attraction of these five zeros. Basins so assessed by the methods are shown
in Figure 3. Like previous examples, in this case also the methods NM-II and NM-IV possess better convergence
than NM-I and NM-III.
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-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-I.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-II.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-3.

NM-III.
-3. -2. -1. 0. 1. 2. 3.

3.

2.

1.

0.

-1.

-2.

-

NM-IV.

Figure 3. Basins of attraction of methods NM-I–NM-IV for polynomial f3(z).

These graphics easily depict the convergence behavior of any method. If we select a value of z0 in
a place where different basins meet each other, it is difficult to guess which zero is going to be obtained
by the method. Therefore, the selection of z0 in such a region is not preferable. The zones with black
color and with amalgam of different colors can not be suitable to choose the initial guess z0 to acquire
a unique root. The most attractive pictures are those with intricate boundaries between the basins of
attraction. These boundaries have fractal-like shapes and correspond to the cases where the method is
more demanding with choice of initial point. At such regions the dynamic behavior of initial guess is
more unpredictable.

4. Numerical Examples

In this section, we employ the special cases NM-i, i = I, II, III, IV of family (3) on some nonlinear
equations to test the validity of theoretical results derived in previous sections. Performance is
compared with some well-known sixth-order methods such as the two- and three-point methods by
Geum et al. [8,9]. The two-point method [8], applicable for m > 1, is given as

yn = xn −m
f (xn)

f ′(xn)
,

xn+1 = yn −Q f (u, s)
f (yn)

f ′(yn)
, (30)

where u =
(

f (yn)
f (xn)

) 1
m

and s =
(

f ′(yn)
f ′(xn)

) 1
m−1

, and Q f : C2 → C is a holomorphic function in

neighborhood of origin (0, 0). Considering the following cases of function Q f (u, s) in the Formula (30)
and denoting the corresponding iterative method by GKN-1(j), j = a, b, c, d:

(a) Q f (u, s) = m(1 + 2(m− 1)(u− s)− 4us + s2).
(b) d Q f (u, s) = m(1 + 2(m− 1)(u− s)− u2 − 2us).

(c) Q f (u, s) = m+au
1+bu+cs+dus , where a = 2m

m−1 , b = 2− 2m, c = 2(2−2m+m2)
m−1 and d = −2m(m− 1).

(d) Q f (u, s) = m+a1u
1+b1u+c1u2

1
1+d1s , where a1 = 2m(4m4−16m3+31m2−30m+13

(m−1)(4m2−8m+7) , b1 = 4(2m2−4m+3)
(m−1)(4m2−8m+7) ,

c1 = − 4m2−8m+3
4m2−8m+7 and d1 = 2(m− 1).

Next, the three-point method [9] for m ≥ 1 is expressed as

yn = xn −m
f (xn)

f ′(xn)
,

zn = xn −mQ f (u)
f (xn)

f ′(xn)
,

xn+1 = xn −mK f (u, v)
f (xn)

f ′(xn)
, (31)
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wherein u =
(

f (yn)
f (xn)

) 1
m

and v =
(

f (zn)
f (xn)

) 1
m

. Functions Q f and K f are analytic in a neighborhood of 0

and (0, 0), respectively. We consider the following combinations of Q f (u) and K f (u, v), and denote
the corresponding iterative schemes by GKN-2(j), j = a, b, c, d:

(a) Q f (u) = 1+u2

1−u , K f (u, v) = 1+u2−v
1−u+(u−2)v .

(b) Q f (u) = 1 + u + 2u2, K f (u, v) = 1 + u + 2u2 + (1 + 2u)v.
(c) Q f (u) = 1+u2

1−u , K f (u, v) = 1 + u + 2u2 + 2u3 + 2u4 + (2u + 1)v.
(d) Q f (u) =

(2u−1)(4u−1)
1−7u+13u2 , K f (u, v) = (2u−1)(4u−1)

1−7u+13u2−(1−6u)v .

Computations are performed in the programming package of Mathematica software using
multiple-precision arithmetic. The results displayed in Tables 1–4 contain (i) the iteration number (n)
in which the solution is obtained with required accuracy, (ii) the last three errors en = |xn+1 − xn|, (iii)
the computational order of convergence (COC), and (iv) the CPU time (CPU-time) elapsed during the
execution of program. The required iteration number (n) and elapsed time are recorded when the
criterion |xn+1 − xn|+ | f (xn)| < 10−350 is satisfied. Computational order of convergence (COC) is
calculated by the formula (see [28])

COC =
ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| .

Table 1. Numerical results for Example 1.

Methods n |en−2| |en−1| |en| COC CPU-Time

GKN-1(a) 4 1.06e− 09 3.86e− 56 9.03e− 335 6.0000 0.1797
GKN-1(b) 4 1.06e− 09 3.91e− 56 9.85e− 335 6.0000 0.1757
GKN-1(c) 4 1.06e− 09 4.34e− 56 2.02e− 334 6.0000 0.1797
GKN-1(d) 4 1.07e− 09 1.17e− 55 2.02e− 331 6.0000 0.1757
GKN-2(a) 4 1.19e− 06 5.39e− 38 4.56e− 226 5.9999 0.2032
GKN-2(b) 4 1.20e− 06 1.61e− 37 9.49e− 223 5.9999 0.2070
GKN-2(c) 4 1.20e− 06 1.12e− 37 7.51e− 224 5.9999 0.2110
GKN-2(d) 4 1.20e− 06 1.87e− 37 2.76e− 222 5.9999 0.2030

NM-I 3 1.08e− 07 4.33e− 51 0 7.0000 0.1172
NM-II 3 1.08e− 07 8.31e− 52 0 7.0000 0.1250
NM-III 3 1.08e− 07 4.33e− 51 0 7.0000 0.1367
NM-IV 3 1.08e− 07 8.31e− 52 0 7.0000 0.1365

Table 2. Numerical results for Example 2.

Methods n |en−2| |en−1| |en| COC CPU-Time

GKN-1(a) 4 2.17e− 08 4.61e− 25 1.01e− 152 6.0000 1.4687
GKN-1(b) 4 2.17e− 08 4.60e− 25 2.27e− 151 6.0000 1.4570
GKN-1(c) 4 2.11e− 08 4.21e− 25 1.03e− 150 6.0000 1.5040
GKN-1(d) 4 1.77e− 08 2.48e− 25 2.68e− 151 6.0000 1.4960
GKN-2(a) 4 4.83e− 07 1.36e− 41 6.84e− 249 6.0000 1.3437
GKN-2(b) 4 4.90e− 07 2.89e− 41 1.21e− 246 6.0000 1.3867
GKN-2(c) 4 4.88e− 07 2.22e− 41 1.98e− 247 6.0000 1.4257
GKN-2(d) 4 4.89e− 07 3.22e− 41 2.62e− 246 6.0000 1.3945

NM-I 3 1.44e− 08 6.35e− 59 0 7.0000 0.9610
NM-II 3 1.43e− 08 1.60e− 59 0 7.0000 0.9767
NM-III 3 1.44e− 08 6.35e− 59 0 7.0000 0.9492
NM-IV 3 1.44e− 08 1.89e− 59 0 7.0000 0.9532

For numerical testing we choose the following problems.
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Example 1. Finding the eigenvalues of the characteristic equation of a square matrix of order greater than 4 is a
big problem [29]). We consider the following 9 × 9 matrix.

M =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 0 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


.

The characteristic polynomial of the matrix (M) is given by

f1(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960.

One of the eigen values is 3 with multiplicity 4. Numerical results produced for this example, taking initial
guess x0 = 2.25, are shown in Table 1.

Example 2. We consider the manning problem arising in isentropic supersonic flow around a sharp expansion
corner. Let b = γ+1

γ−1 , where γ is the specific heat ratio of the gas. The following relation is developed between the
Mach numbers before the corner and after the corner denoted by M1 and M2, respectively (see [3]),

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2
− tan−1

(M2
1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

.

Let us consider a particular case: To solve the equation for M2 given that M1 = 1.5, γ = 1.4, and δ = 100.
Then, we have that

61/2

(
tan−1

( x2 − 1
6

)1/2
− tan−1

( 1
12

)1/2
)
−
(

tan−1(x2 − 1)1/2 − tan−1
(1

2

)1/2)
− π/18 = 0.

where x = M2.
Now considering this equation for three times, the required nonlinear function is given as

f2(x) =
[

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)
− tan−1 (1

2

√
5
6
))
− 11

63

]3
.

This function has one zero 1.8411027704 . . . with multiplicity 3. To find the zero, we choose initial
approximation x0 = 1.50. The obtained results are shown in Table 2.

Example 3. Next we assume nonlinear test function (see [8])

f3(x) =
(

x−
√

3x3 cos
(πx

6

)
+

1
x2 + 1

− 11
5

+ 4
√

3
)
(x− 2)4

The multiple zero of function f3 is 2 with multiplicity 5, which is calculated using initial approximation
x0 = 1.5. The obtained results are shown in Table 3.
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Example 4. Consider the isothermal continuous stirred tank reactor (CSTR) problem [30]. Components A and
R are fed to the reactor at the corresponding rates of Q and q−Q. Then, the following scheme develops in the
reactor (see [30]),

A + R→ B

B + R→ C

C + R→ D

C + R→ E. (32)

This reaction scheme was analyzed in [30] to design simple feedback control system. In the analysis,
the following equation was given for the transfer function of the reactor,

KC
2.98(x + 2.25)

(x + 1.45)(x + 2.85)2(x + 4.35)
= −1.

KC is called the gain of the proportional controller. The control system is stable for those KC values which yield
zeros of the transfer function with negative real part. For KC = 0, we obtain poles of the open-loop transfer
function as roots of the equation:

f4(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0,

that are given as x = −1.45,−2.85,−2.85,−4.35. We see the root −2.85 is multiple with multiplicity 2.
The results so produced by the methods using x0 = −2.80 are shown in Table 4.

Table 3. Numerical results for Example 3.

Methods n |en−2| |en−1| |en| COC CPU-Time

GKN-1(a) 4 1.20e− 05 6.82e− 31 2.31e− 182 5.9999 0.5908
GKN-1(b) 4 1.20e− 05 6.86e− 31 2.40e− 182 5.9999 0.5864
GKN-1(c) 4 1.21e− 05 7.72e− 31 5.18e− 182 5.9999 0.5787
GKN-1(d) 4 1.58e− 05 1.00e− 29 6.51e− 175 5.9999 0.5897
GKN-2(a) 4 3.17e− 05 1.64e− 28 3.21e− 168 5.9999 0.5625
GKN-2(b) 4 3.50e− 05 6.90e− 28 4.05e− 164 5.9999 0.5702
GKN-2(c) 4 3.41e− 05 4.42e− 28 2.09e− 165 5.9999 0.5702
GKN-2(d) 4 3.54e− 05 8.45e− 28 1.56e− 163 5.9999 0.5470

NM-I 4 4.56e− 06 9.64e− 39 1.84e− 267 6.9999 0.4725
NM-II 4 4.51e− 06 4.52e− 39 4.60e− 270 6.9999 0.4687
NM-III 4 4.56e− 06 9.64e− 39 1.84e− 267 6.9999 0.4842
NM-IV 4 4.51e− 06 4.32e− 39 3.21e− 270 6.9999 0.4647

Table 4. Numerical results for Example 4.

Methods n |en−2| |en−1| |en| COC CPU-Time

GKN-1(a) 5 3.14e− 21 9.67e− 65 2.05e− 195 3.0000 0.03502
GKN-1(b) 5 3.47e− 21 9.47e− 65 1.95e− 195 3.0000 0.03525
GKN-1(c) 5 3.64e− 21 1.09e− 64 2.94e− 195 3.0000 0.03525
GKN-1(d) 5 3.49e− 21 9.68e− 65 2.05e− 195 3.0000 0.04300
GKN-2(a) 4 4.86e− 04 1.78e− 23 4.29e− 140 5.9997 0.03900
GKN-2(b) 4 4.83e− 04 1.75e− 23 4.03e− 140 5.9996 0.03525
GKN-2(c) 4 4.83e− 04 1.74e− 23 3.84e− 140 5.9997 0.03525
GKN-2(d) 4 4.85e− 04 1.79e− 23 4.54e− 140 5.9996 0.03925

NM-I 3 3.14e− 07 1.99e− 50 0 6.9999 0.02752
NM-II 3 3.14e− 07 1.87e− 50 0 6.9999 0.02351
NM-III 3 3.14e− 07 1.99e− 50 0 6.9999 0.03125
NM-IV 3 3.14e− 07 1.89e− 50 0 6.9999 0.02725
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We observe from the numerical results that the errors become smaller as the iterations proceed,
which points to the increasing accuracy in the values of successive approximations. Per iteration, the
number of significant figures gained by the proposed methods is larger than the existing methods
because of the higher order. The reading ‘0′ of error |en| indicates that at this stage the stopping
condition |xn+1 − xn|+ | f (xn)| < 10−350 has been reached. The results of penultimate column of each
table support the theoretical seventh-order of convergence. This shows that the convergence order
is preserved. However, this is not true for the existing sixth-order methods GKN-1(j), j= a, b, c, d, as
the sixth-order convergence is not preserved in last problem. The computational efficiency can be
observed by the readings of elapsed CPU-time displayed in the last column of each table. Indeed,
the new methods are more efficient since they consume less execution time than the existing ones.
We have also applied the methods on other different problems to confirm the accuracy and efficiency
and results are found on a par with the above conclusions.

5. Conclusions

A class of seventh-order numerical methods has been designed for computing multiple zeros
of nonlinear functions. Local convergence analysis has been shown under standard assumptions
which proves the convergence order seven. Some particular cases have been explored and their
performance has been checked by using two different ways viz. by numerical testing and by graphical
tool of attraction basins. Comparison of performance of the methods with existing methods has
also been shown. In addition, a comparison of estimated CPU-time has been performed in order
to rank the algorithms. We emphasize that the ranking obtained in this way matches well with the
ranking obtained from the computational efficiency. As remarked earlier that according to Kung–Traub
conjecture one can develop a method with optimal eighth convergence using four function evaluations.
Therefore, this will be a motivational factor for us in future endeavor to develop such methods
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29. Jăntschi, L. The eigenproblem translated for alignment of molecules. Symmetry 2019, 11, 1027. [CrossRef]
30. Douglas, J.M. Process Dynamics and Control; Prentice Hall; Englewood Cliffs, 1972.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.amc.2016.02.029
http://dx.doi.org/10.1007/BF01396176
http://dx.doi.org/10.1007/s10910-014-0460-8
http://dx.doi.org/10.15388/NA.18.2.14018
http://dx.doi.org/10.1016/j.amc.2008.01.031
http://dx.doi.org/10.1016/j.camwa.2011.11.040
http://dx.doi.org/10.1016/j.amc.2010.06.031
http://dx.doi.org/10.1016/j.aej.2013.05.001
http://dx.doi.org/10.1016/j.joems.2013.03.011
http://dx.doi.org/10.1080/00207168208803346
http://dx.doi.org/10.1016/j.cam.2011.03.014
http://dx.doi.org/10.1145/321850.321860
http://dx.doi.org/10.1007/BF01932152
http://dx.doi.org/10.1007/BF01401018
http://dx.doi.org/10.1016/j.amc.2011.07.076
http://dx.doi.org/10.1007/BF03025310
http://dx.doi.org/10.1016/S0893-9659(00)00100-2
http://dx.doi.org/10.3390/sym11081027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Development of Scheme
	Complex Geometry of Methods
	Numerical Examples
	Conclusions
	References

