
DETECTION OF SOFTWARE DATA DEPENDENCY IN SUPERSCALAR
COMPUTER ARCHITECTURE EXECUTION

Elena ZAHARIEVA-STOYANOVA, Lorentz JÄNTSCHI

Technical University of Gabrovo, Bulgaria, zaharieva@tugab.bg
Technical University of Cluj-Napoca, Romania, lori@webmail.academicdirect.ro

Abstract: This paper treats the problem of detection of data hazards in superscalar
execution. The algorithms of independent instruction detection are represented. They
can be used in out-of-order execution logic and a code optimized algorithm. The
algorithms use the platform of Intel Pentium architecture and analyze the IA-32
instruction set. The implementation of the algorithms is in a software simulator, which
represents the way the Intel Pentium Processor works. It can be used in software
module, which simulate out-of-order execution logic.

Keywords: simulators, RISC architecture, Intel Pentium processor, IA-32 architecture,
data hazards, data-flow analysis

1. INTRODUCTION

Instruction-level parallelism is a frequently used
technique in up-do-date processors' architectures. It
makes it possible to execute more than one
instruction per cycle. Today’s processors use more
than one pipeline, which means that they have
superscalar architecture.

Although the pipeline usage is a feature of RISC
processors, this technique is used also in processors
with mixed architecture - a mix of RISC and CISC.
For example, developing IA-32 architecture, Intel
Corporation introduced superscalar technique in the
Pentium processor. The first Intel Pentium processor
has two 5-stage pipelines. Next comes 3-ways
supersclar P6 architecture with 10-stage pipelines
(Keshava and Pentkovski, 1999). The number of
pipeline stages in NetBurst architecture is increased
to 20 (Hinton et al. 2001).

Because of the possibility to execute more than one
instruction per cycle, the instruction-level parallelism

increases the performance highly. On the other hand,
an ideal sequence of uniform instructions is rare. The
execution of one instruction often depends on the
result of the previous instruction’s execution. This
situation is called data hazard.

Data hazards make the performance lower than that
of one-pipeline architectures. The situation when the
next instruction depends on the results of the
previous one is occurred very often. It means that
these instructions cannot be executed together. For
example, the first Intel Pentium has two 5-stage
pipelines. If two neighbor instructions are
independent they could be decoupled and executed
together in U and V pipeline. If there is data
dependency in the instructions, the second instruction
waits to be decoupled with a next one.

To decrease the influence of data hazards, P6
processor architecture introduced the concept of
dynamic execution. It makes it possible to get as far
as out-of-order execution in a superscalar
implementation. Dynamic execution incorporates the

concepts dynamic data flow analysis and speculative
execution.

Dynamic data flow analysis involves real-time
analysis of the flow of data through the processor to
determine data and register dependencies and to
detect opportunities for out-of-order instruction
execution. Speculative execution refers to the
processor’s ability to execute instructions that lie
beyond a conditional branch that has not yet been
resolved, and ultimately to commit the results in the
order of the original instruction stream.

This paper treats the problem of detection of data
hazards in superscalar execution. The algorithms of
independent instruction detection are represented.
They can be used in out-of-order execution logic and
a code optimized algorithm. The algorithms use the
platform of Intel Pentium architecture and analyze
the IA-32 instruction set. The algorithms
implementation is involved in a software simulator of
Intel Pentium architecture.

2. DATA HAZARDS IN SUPERSCALAR

ARCHITECTURES

The superscalar architecture makes it possible to
execute more than one instruction per cycle. To
execute several instructions simultaneously, the
instructions have to be arranged in an ideal sequence,
and that happens rarely. Every deviation from the
ideal sequence of uniform instructions is called a
hazard (Hlavicka, 1999).

The hazard is situation that prevents the next
instruction in the instruction stream from executing
during its designated clock cycle. Hazards in
pipelines can make it necessary to stall pipelines.
They reduce the performance from the ideal speedup
gained by pipelining and superscalar execution.

There are three types of hazards: structural, data and
control hazards.

Structural hazards arise from resource conflicts in the
hardware. In these cases, the hardware cannot
support some combination of instructions in
simultaneous overlapped execution. Data hazards
appear when the execution of an instruction depends
on the results of previous instruction. Control hazards
arise from the pipelining of branches, calls and other
instructions that change Program Counter. Control
hazards reduce the performance when these types of
instructions occur in a program very often.

Structural hazards could be avoided by duplicating
hardware resources. To avoid control hazards, the
branch prediction technique is used.

Data hazards are more common than the rest. As it
was mentioned, they arise because of data
interdependency in the instructions’ order.
Depending on the order of read and writes access in

the instruction data hazards may be classified as
follows:

• RAW (read after write);
• WAR (write after read);
• WAW (write after write).

RAW data hazard is the most common type. It arises
when the next instruction tries to read a source before
the previous instruction writes to it. So, the next
instruction gets the old value incorrectly. WAR
hazard arises when the next instruction writes to a
destination before the previous instruction reads it. In
this case, the previous instruction gets a new value
incorrectly. WAW data hazard is situation when the
next instruction tries to write to a destination before a
previous instruction writes to it and it results in
changes done in the wrong order.

Instr.2 rd rs1 rs2

Instr.1 rd rs1

(a) RAW data hazard

Instr.2 rd rs1 rs2

Instr.1 rd rs1

(b) WAR data hazard

rs2 rs1 Instr.1

rs2 rs1

rd

rd Instr.2

rs2

rs2

(c) WAW data hazard

Fig. 1. The examples of data hazards

The software dependencies between two neighbor
instructions are given on fig. 1. Fig. 1a describes the
RAW data hazard - the destination register of the first
instruction and a source register of the second
instruction are the same.

WAR data hazard could be arises if an instruction
needs more than one cycle for execution. For
example, if a source register of the first instruction
and destination register of the second instruction is
the same; and if second instruction execution is faster
the first one, it is possible to arise WAR data hazard
(fig 1b).

The situation described on fig. 1c. is similar - if the
second instruction is faster than the first one; and if

they use the same destination; it is possible the result
from the first instruction to be written after the result
from second one.

It is difficult to find a solution to the problem with
data hazards. One possible solution of this problem is
a simple hardware technique called a forwarding or
bypass. This technique works as follows: The ALU
result is always fed back to the ALU input latches. If
the hardware detects that the next instruction uses the
results from the previous instruction, the control
logic selects the forwarded result as the ALU input
rather than the value read from the register files.

RAW data hazards make the performance lower than
that of one-pipeline architectures. The situation when
the next instruction depends on the results of the
previous one is occurred very often. It means that
these instructions cannot be executed together. For
example, the first Intel Pentium has two 5-stage
pipelines. If two neighbor instructions are
independent they could be decoupled and executed
together in U and V pipeline. If there is data
dependency in the instructions, the second instruction
waits to be decoupled with a next one. (Pentium,
1998)

To decrease the influence of data hazards, P6
processor architecture introduced the concept of
dynamic execution. It makes it possible to get as far
as out-of-order execution in a superscalar
implementation (Intel Corporation, 2000, 2001).
Dynamic execution incorporates the concepts
dynamic data flow analysis and speculative
execution.

Dynamic data flow analysis involves real-time
analysis of the flow of data through the processor to
determine data and register dependencies and to
detect opportunities for out-of-order instruction
execution. Speculative execution refers to the
processor’s ability to execute instructions that lie
beyond a conditional branch that has not yet been
resolved, and ultimately to commit the results in the
order of the original instruction stream.

3. DETECTION OF SOFTWARE DATA
DEPENDENCY

To find data hazards in program execution order, it is
necessary to observe neighbor instructions. If they
use the same sources and a destination, it is possible
to arise some type of data hazards.

The number of the neighbor instruction observed by
hazard detection algorithm depends on the pipelines'
number. For example, two-way superscalar
architecture in Intel Pentium P5 needs to find
whether there is dependency between two neighbor
instructions.(Pentium, 1998)

3.1 Algorithm for detection of software data
dependency between two instructions

To determine software dependency between two
neighbor instructions, it is necessary to detect
whether the use the same data operands or not.
Instructions use register, memory, or immediate for a
data operand. In this paper the RISC architecture
features are used.

RISC processors have Load/Store architecture. It
means that only two special instructions use memory
operand: Load and Store. Other instructions, like
ALU type addition and subtraction, use registers and
do not use memory.

RISC instructions use three operands. In this case,
the source operands are reusable. The common
instruction format is:

Instruction Rd, Rs1, Rs2,

where: Rd is destination; Rs1, Rs2 are sources.

The algorithm keeps the result data in a buffer with
size equal to the number of instructions. If there is
data dependency between instructions, the
corresponding value in the buffer is: 1 for RAW, 2
for WAR, 4 for WAW. Otherwise, the value is 0. The
value at the start is 0 because the first instruction is
independent.

Each instruction could be described with following
information:

• code - instruction code;
• Rd - destination;
• Rs1 - first source;
• Rs2 - second source.

The algorithm for detection of software dependency
work as follows:

Step 1: Determining of first instruction as
undependable.

buffer[0]=0;

for I = (first instruction) to (last instruction – 1)

 {Step 2: Determine the information for the
instruction I: code1, Rd1, Rs11, Rs12

 Step 3: Determine the information for the
instruction I+1: code2, Rd2, Rs21, Rs22

 Step 4: Determine if there is RAW data hazard:

 if ((Rs21==Rd1) or (Rs22==Rd1)) buffer[I]=1;

 Step 5: Determine if there is WAR data hazard:

 if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[I]=2;

 Step 6: Determine if there is WAW data hazard:

 if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[I]=4;

 }

Using C/C++ programming language, the algorithm's
representation is:

struct instruction
{ char code[5];

 char rd[8];
 char rs1[8];
 char rs2[8];
 unsigned char address_mode;
};

struct instruction prev, next; // prev, next keep
information about two neighbors instructions

int i, n; // n is number of instructions

unsigned char *buffer; // the result buffer

buffer=new char [n];

buffer[0] = 0; // first instruction is independent

for (i=1; i<n; i++)

 {

 /* determining the information for the previous
instruction i-1; prev stores this information */

 /* determining the information for next instruction
i; next stores this information */

 if(strcmp(prev.rd,next.rs1)||strcmp(prev.rd,next.rs2))
buffer[i] = 1;

 else buffer[i]=0;

 if(strcmp(next.rd,prev.rs1)||strcmp(next.rd,prev.rs2))
buffer[i] |=2 ;

 if(strcmp(next.rd, prev.rd) buffer[i] |=4 ;

}

The real program have to verify if there are identical
registers: EAX and AX, for example. It is depends on
the particular algorithm application. The information
about instruction code and addressing mode is
needless in most cases. This information is used for
full instruction description.

3.2. Advanced algorithm for detection of
software data dependency

The algorithm for detection of data dependency gives
information about dependency of two-neighbor
instruction. It is more interesting to find data
dependency between more than two-neighbor
instructions.

In this case, the algorithm can be modified as
follows: The external cycle to value of k is
introduced. The value of k defines for how many
instructions has to the algorithm determine is it data
dependency or not. For example, if the algorithm
searches data dependencies between three neighbor
instructions, the value of k is 3.

Using C/C++ programming language, the algorithm's
representation is:

int j, k; /* k value determines the farthest
instructions, which have data (most remote
instructions, who have data) interdependency */

for (j=1; j<k; j++)

 { // reset first j buffer items

 for (i=1; i<n; i=i+j)

 { /* determining the information for the previous
instruction i-j; prev stores this information */

 /* determining the information for the next
instruction i; next stores this information */

if(strcmp(prev.rd,next.rs1)||strcmp(prev.rd,next.rs2))
buffer[i][j-1] = 1;

else buffer[i][j-1]=0;

if(strcmp(next.rd, prev.rs1)||strcmp(next.rd,prev.rs2))
buffer[i][j-1] |=2 ;

 if(strcmp(next.rd,prev.rd)buffer[i][j-1]|=4 ;
 }
}

It is more appropriate to treat the result data buffer as
a matrix. The matrix rows define whether there is
data dependency between instructions. The matrix
columns define in which neighbor instruction there is
data dependency. For example, first column shows
dependency between two-neighbor instructions;
second column determines a dependency between
three-neighbor instructions and so on. If all values in
a matrix row are 0, it means that the instruction is
independent.

The algorithm detects data dependency between
instructions in program order. It can be used for data
flow analysis. The result data buffer contains
information about out-of-order execution logic.

4. APPLICATION OF SOFTWARE DATA
DEPENDENCY DETECTION ALGORITHMS

The represented algorithms are implemented in
software simulator of Intel Pentium architecture.

Simulation is a frequently used technique in
computer architecture development. The software
simulators could be used as a tool for studying these
architectures and optimisation processes. The
existing demo programs show these principals just as
an overall picture. The reason to create a new
simulator is to show the base concepts of the Intel
Pentium processors working by means of short
assembler programs. This simulator could be used
also for source code efficiency evaluation.
(Zaharieva-Stoyanova, 2002)

The existing demo programs, for example DynExec,
show these principals just as an overall picture. The
reason to create a new simulator is to show the base
concepts of the Intel Pentium processors working by
means of short assembler programs. This simulator
could be used also for source code efficiency
evaluation. This type of simulator would be very
useful in higher-school education to illustrate the
pipelining in a superscalar architecture. Moreover, it
shows a commonly used real processor as Intel
Pentium.

The base structure of Intel Pentium processor
simulation model of is shown on fig. 2. The Graphics
User Interface (GUI) consists of the following forms:

• Coupling of Instructions - it defines
whether two instructions can be coupled and
executed simultaneously avoiding data hazard.

• Source code window - it shows the source
code and the currently executed instructions in the
code segment (.code). The currently executed
instructions are shown as well.

• Branch Prediction - this program simulates
the functioning of branch prediction. If there is a
jump, a branch, or a call instruction, branch
prediction proceeds to predict if the branch shall be
taken or not. • Data window – it shows the contents of the

memory bytes, where the standard data segment
(.data) is allocated.

The simulator of IA-32 architecture consists of four
base modules. One of them is Coupling of
instructions. It determines whether two instructions
can be coupled and executed together avoiding data
hazards. In this paper the algorithm of module
Coupling of instructions is represented.

• Stack window – it shows the contents of the
memory bytes, where the stack segment (.stack) is
allocated.

• Registers window - it shows the contents of
general-purpose registers (EAX, EBX, ECX, EDX,
EBP, ESI, EDI) and the flags (Eflags). At the
beginning the registers are cleaned.

Each program instruction gives itself the following
information:

• a source operand;
• Pipelines window - this is a graphics

representation of the work of the two pipelines for
the next 5 -10 cycles.

• a destination operand.

• is it a simple instruction or not;

• is it an ALU instruction or not;

Load
Source

Stack
Window

Execution Control

Branch
Prediction

Coupling of
Instructions

Cycles per
Instruction

Registers
Window

Pipelines
Window Data

Window

Source
Code

Window

According to the decoupling rules, only hardware-
executed instructions can be decoupled and executed
together. This kind of instructions are: MOV, LEA,
PUSH, POP; ALU type instructions like ADD, ADC,
SUB, SBB, AND, OR, XOR, NOT.

ALU type instructions need two sources. Intel
Pentium has mixed architecture - between RISC and
CISC. IA-32 instructions use two data operands, so
instructions like ADD use the same operand for
destination and first source. That is why it is
necessary to know if it is an ALU instruction or not.

The algorithm for detection of data dependency gives
information about dependency of a two-neighbor
instruction. It is more interesting to find data
dependency between more than two-neighbor
instructions. The second algorithm detects this kind
of data dependency.

This information is described as follows:

struct instruction_info

{ char destination[4];
Fig. 2. The structure of Intel Pentium architecture

software simulator char source[4];

 unsigned char s_type:1;
Apart from the GUI, the program includes the
following modules: unsigned char alu_type:1;

• Load Source – it loads source code in the
simulator. It also finds syntax errors in the source;

 };

If the instruction is hardware-executed, s_type is 1; if
the instruction is one of ADD, ADC, SUB, SBB,
AND, OR, XOR, NOT, alu_type is 1. Destination
and source are destination/source data or register.

• Cycles per Instruction – it defines the
number of the cycles needed for the execution of the
current instruction; it also determines the type, the
number of the operands, and the address mode. The algorithm works as follows:

struct instruction_info prev, next;

/* prev, next keep information about two neighbors
instructions */

int i, n; // n is number of instructions

unsigned char *buffer; // the result buffer

*buffer = 0; // first instruction is independent

buffer = new char [n];

for (i=1; i<n; i++)

 { /* determining the information for the previous
instruction i-1; prev stores this information */

 /* determining the information for next instruction
i; next stores this information */

 if(strcmp(prev.destination,next.source))buffer[I]=1;

 else *(buffer+i) = 0;

 if((next.alu_type)&&strcmp(prev.destination
,next.destination) buffer[I] = 1;

}

delete [] buffer;

The real program verifies if the source and
destination registers are identical. For example,
registers EAX and AX are identical but the registers
AH and AL is not.

This algorithm is realized by a function in the
Coupling of instructions module, which searches for
independent instructions to decouple.

5. CONCLUSION

Instruction-level parallelism makes it possible to
execute more than one instruction per cycle. Today’s
processors use more than one pipeline, which means
that they have superscalar architecture.

Instruction-level parallelism increases the
performance but an ideal sequence of uniform
instructions is rare. The execution of one instruction
often depends on the result of the previous
instruction’s execution. This situation is called data
hazard. Data hazards reduce the architecture
performance.

This paper treats the problem of detection of data
hazards in superscalar execution. The algorithms of
independent instruction detection are represented.

The firs algorithm is implemented in a software
simulator, which represents the way the Intel
Pentium Processor works. It can be used in out-of-
order execution logic.

Simulating and showing all processes related with
Pentium processor working at real-time is too hard
task and it is not necessary for the objective of this
research. The objective is creation of a simulator,
which is able to show the pipelining in a superscalar
architecture using a real existing architecture as an
example.

To be created a software simulator of Intel Pentium
processors' functionality, it is necessary to simulate
data flow analysis. In this paper the algorithm of
independent instruction detection is represented. The
first version of the algorithm is used in a program
module Coupling of instruction, which is a part of
software simulator of IA-32 architecture. The
advanced algorithm is able to detect data dependency
between more than two instructions. It can be used in
out-of-order execution logic.

REFERENCES:

Hinton G., D. Sager, M. Upton, D. Boggs,
D.Carmean , A. Kyker and P. Roussel (2001). The
Micro architecture of the Pentium 4 Processor, Intel
Technology Journal Q1.

Hlavicka J., (1999). Computer Architecture, CVUT
Publishing house,.

Keshava J. and Vl. Pentkovski (1999). Pentium III
Processor Implementation Tradeoffs, Intel Corp.,
Intel Technology Journal Q2.

Zaharieva-Stoyanova, E. (2002), Simulation
Models Of Pipelining in Intel Pentium Processors,
IEEE-TTTC International Conference on
Automation, Quality and Testing, Robotics, Cluj-
Napoca, Romania, pp. 373-378.
Zaharieva-Stoyanova, E. (2002). Simulation of
Pipelined Data Processing in Intel Pentium
Processor, CompSysTech, Sofia.

*** (2000). A Detailed Look Inside the Intel
NetBurst Micro-Architecture of the Intel Pentium 4
Processor, Intel Corporation.

*** (2001). IA-32 Intel Architecture Software
Developer's Manual, Intel Corporation.

*** (1998). Pentium, NiSoft Ltd.

	3. DETECTION OF SOFTWARE DATA DEPENDENCY
	
	5. CONCLUSION

