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Abstract: This paper treats the problem of detection of data hazards in superscalar 
execution. The algorithms of independent instruction detection are represented. They 
can be used in out-of-order execution logic and a code optimized algorithm. The 
algorithms use the platform of Intel Pentium architecture and analyze the IA-32 
instruction set. The implementation of the algorithms is in a software simulator, which 
represents the way the Intel Pentium Processor works. It can be used in software 
module, which simulate out-of-order execution logic.  
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1. INTRODUCTION  

Instruction-level parallelism is a frequently used 
technique in up-do-date processors' architectures. It 
makes it possible to execute more than one 
instruction per cycle. Today’s processors use more 
than one pipeline, which means that they have 
superscalar architecture.  

Although the pipeline usage is a feature of RISC 
processors, this technique is used also in processors 
with mixed architecture - a mix of RISC and CISC. 
For example, developing IA-32 architecture, Intel 
Corporation introduced superscalar technique in the 
Pentium processor. The first Intel Pentium processor 
has two 5-stage pipelines. Next comes 3-ways 
supersclar P6 architecture with 10-stage pipelines 
(Keshava and Pentkovski, 1999). The number of 
pipeline stages in NetBurst architecture is increased 
to 20 (Hinton et al. 2001). 

Because of the possibility to execute more than one 
instruction per cycle, the instruction-level parallelism 

increases the performance highly. On the other hand, 
an ideal sequence of uniform instructions is rare. The 
execution of one instruction often depends on the 
result of the previous instruction’s execution. This 
situation is called data hazard. 

Data hazards make the performance lower than that 
of one-pipeline architectures. The situation when the 
next instruction depends on the results of the 
previous one is occurred very often. It means that 
these instructions cannot be executed together. For 
example, the first Intel Pentium has two 5-stage 
pipelines. If two neighbor instructions are 
independent they could be decoupled and executed 
together in U and V pipeline. If there is data 
dependency in the instructions, the second instruction 
waits to be decoupled with a next one.  

To decrease the influence of data hazards, P6 
processor architecture introduced the concept of 
dynamic execution. It makes it possible to get as far 
as out-of-order execution in a superscalar 
implementation. Dynamic execution incorporates the 



concepts dynamic data flow analysis and speculative 
execution. 

Dynamic data flow analysis involves real-time 
analysis of the flow of data through the processor to 
determine data and register dependencies and to 
detect opportunities for out-of-order instruction 
execution. Speculative execution refers to the 
processor’s ability to execute instructions that lie 
beyond a conditional branch that has not yet been 
resolved, and ultimately to commit the results in the 
order of the original instruction stream.  

This paper treats the problem of detection of data 
hazards in superscalar execution. The algorithms of 
independent instruction detection are represented. 
They can be used in out-of-order execution logic and 
a code optimized algorithm. The algorithms use the 
platform of Intel Pentium architecture and analyze 
the IA-32 instruction set. The algorithms 
implementation is involved in a software simulator of 
Intel Pentium architecture. 
 

2. DATA HAZARDS IN SUPERSCALAR 

ARCHITECTURES 

The superscalar architecture makes it possible to 
execute more than one instruction per cycle. To 
execute several instructions simultaneously, the 
instructions have to be arranged in an ideal sequence, 
and that happens rarely. Every deviation from the 
ideal sequence of uniform instructions is called a 
hazard (Hlavicka, 1999). 

The hazard is situation that prevents the next 
instruction in the instruction stream from executing 
during its designated clock cycle. Hazards in 
pipelines can make it necessary to stall pipelines. 
They reduce the performance from the ideal speedup 
gained by pipelining and superscalar execution.  

There are three types of hazards: structural, data and 
control hazards.  

Structural hazards arise from resource conflicts in the 
hardware. In these cases, the hardware cannot 
support some combination of instructions in 
simultaneous overlapped execution.  Data hazards 
appear when the execution of an instruction depends 
on the results of previous instruction. Control hazards 
arise from the pipelining of branches, calls and other 
instructions that change Program Counter. Control 
hazards reduce the performance when these types of 
instructions occur in a program very often. 

Structural hazards could be avoided by duplicating 
hardware resources. To avoid control hazards, the 
branch prediction technique is used. 

Data hazards are more common than the rest. As it 
was mentioned, they arise because of data 
interdependency in the instructions’ order. 
Depending on the order of read and writes access in 

the instruction data hazards may be classified as 
follows: 

• RAW (read after write); 
• WAR (write after read); 
• WAW (write after write). 

RAW data hazard is the most common type. It arises 
when the next instruction tries to read a source before 
the previous instruction writes to it. So, the next 
instruction gets the old value incorrectly. WAR 
hazard arises when the next instruction writes to a 
destination before the previous instruction reads it. In 
this case, the previous instruction gets a new value 
incorrectly. WAW data hazard is situation when the 
next instruction tries to write to a destination before a 
previous instruction writes to it and it results in 
changes done in the wrong order. 
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(c) WAW data hazard  

Fig. 1. The examples of data hazards 

The software dependencies between two neighbor 
instructions are given on fig. 1. Fig. 1a describes the 
RAW data hazard - the destination register of the first 
instruction and a source register of the second 
instruction are the same. 

WAR data hazard could be arises if an instruction 
needs more than one cycle for execution. For 
example, if a source register of the first instruction 
and destination register of the second instruction is 
the same; and if second instruction execution is faster 
the first one, it is possible to arise WAR data hazard 
(fig 1b). 

The situation described on fig. 1c. is similar - if the 
second instruction is faster than the first one; and if 



they use the same destination; it is possible the result 
from the first instruction to be written after the result 
from second one. 

It is difficult to find a solution to the problem with 
data hazards. One possible solution of this problem is 
a simple hardware technique called a forwarding or 
bypass. This technique works as follows: The ALU 
result is always fed back to the ALU input latches. If 
the hardware detects that the next instruction uses the 
results from the previous instruction, the control 
logic selects the forwarded result as the ALU input 
rather than the value read from the register files. 

RAW data hazards make the performance lower than 
that of one-pipeline architectures. The situation when 
the next instruction depends on the results of the 
previous one is occurred very often. It means that 
these instructions cannot be executed together. For 
example, the first Intel Pentium has two 5-stage 
pipelines. If two neighbor instructions are 
independent they could be decoupled and executed 
together in U and V pipeline. If there is data 
dependency in the instructions, the second instruction 
waits to be decoupled with a next one. (Pentium, 
1998) 

To decrease the influence of data hazards, P6 
processor architecture introduced the concept of 
dynamic execution. It makes it possible to get as far 
as out-of-order execution in a superscalar 
implementation (Intel Corporation, 2000, 2001). 
Dynamic execution incorporates the concepts 
dynamic data flow analysis and speculative 
execution. 

Dynamic data flow analysis involves real-time 
analysis of the flow of data through the processor to 
determine data and register dependencies and to 
detect opportunities for out-of-order instruction 
execution. Speculative execution refers to the 
processor’s ability to execute instructions that lie 
beyond a conditional branch that has not yet been 
resolved, and ultimately to commit the results in the 
order of the original instruction stream.  
 

3. DETECTION OF SOFTWARE DATA 
DEPENDENCY 

To find data hazards in program execution order, it is 
necessary to observe neighbor instructions. If they 
use the same sources and a destination, it is possible 
to arise some type of data hazards. 

The number of the neighbor instruction observed by 
hazard detection algorithm depends on the pipelines' 
number. For example, two-way superscalar 
architecture in Intel Pentium P5 needs to find 
whether there is dependency between two neighbor 
instructions.(Pentium, 1998) 

3.1 Algorithm for detection of software data 
dependency between two instructions 

To determine software dependency between two 
neighbor instructions, it is necessary to detect 
whether the use the same data operands or not. 
Instructions use register, memory, or immediate for a 
data operand. In this paper the RISC architecture 
features are used.  

RISC processors have Load/Store architecture. It 
means that only two special instructions use memory 
operand: Load and Store. Other instructions, like 
ALU type addition and subtraction, use registers and 
do not use memory. 

RISC instructions use three operands. In this case, 
the source operands are reusable. The common 
instruction format is: 

Instruction   Rd, Rs1, Rs2, 

where: Rd is destination; Rs1, Rs2 are sources. 

The algorithm keeps the result data in a buffer with 
size equal to the number of instructions. If there is 
data dependency between instructions, the 
corresponding value in the buffer is: 1 for RAW, 2 
for WAR, 4 for WAW. Otherwise, the value is 0. The 
value at the start is 0 because the first instruction is 
independent.  

Each instruction could be described with following 
information: 

• code - instruction code; 
• Rd - destination; 
• Rs1 - first source; 
• Rs2 - second source. 

The algorithm for detection of software dependency 
work as follows: 

Step 1: Determining of first instruction as 
undependable. 

buffer[0]=0; 

for I = (first instruction) to (last instruction – 1) 

 {Step 2: Determine the information for the 
instruction I: code1, Rd1, Rs11, Rs12 

    Step 3: Determine the information for the 
instruction I+1: code2, Rd2, Rs21, Rs22 

    Step 4: Determine if there is RAW data hazard:   

    if ((Rs21==Rd1) or (Rs22==Rd1)) buffer[I]=1; 

    Step 5: Determine if there is WAR data hazard:  

    if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[I]=2; 

    Step 6: Determine if there is WAW data hazard: 

    if ((Rs11==Rd2) or (Rs12==Rd2)) buffer[I]=4; 

 } 

Using C/C++ programming language, the algorithm's 
representation is: 

struct instruction 
{ char code[5]; 



   char rd[8]; 
   char rs1[8]; 
   char rs2[8]; 
   unsigned char address_mode; 
}; 

struct instruction prev, next;  // prev, next keep 
information about two neighbors instructions 

int i, n;  // n is number of instructions 

unsigned char *buffer; // the result buffer 

buffer=new char [n]; 

buffer[0] = 0; // first instruction is independent 

for (i=1; i<n; i++) 

 {  

   /* determining the information for the  previous 
instruction i-1; prev stores this information */ 

    /* determining the information for next instruction 
i; next stores this information */ 

 if(strcmp(prev.rd,next.rs1)||strcmp(prev.rd,next.rs2)) 
buffer[i] = 1; 

 else buffer[i]=0; 

 if(strcmp(next.rd,prev.rs1)||strcmp(next.rd,prev.rs2)) 
buffer[i] |=2 ; 

    if(strcmp(next.rd, prev.rd) buffer[i] |=4 ;  

} 

The real program have to verify if there are identical 
registers: EAX and AX, for example. It is depends on 
the particular algorithm application.  The information 
about instruction code and addressing mode is 
needless in most cases. This information is used for 
full instruction description.  

3.2. Advanced algorithm for detection of 
software data dependency 

The algorithm for detection of data dependency gives 
information about dependency of two-neighbor 
instruction. It is more interesting to find data 
dependency between more than two-neighbor 
instructions. 

In this case, the algorithm can be modified as 
follows: The external cycle to value of k is 
introduced. The value of k defines for how many 
instructions has to the algorithm determine is it data 
dependency or not. For example, if the algorithm 
searches data dependencies between three neighbor 
instructions, the value of k is 3. 

Using C/C++ programming language, the algorithm's 
representation is: 

int j, k;  /* k value determines the farthest 
instructions, which have data (most remote 
instructions, who have data) interdependency */ 

for (j=1; j<k; j++) 

 { // reset first j buffer items 

    for (i=1; i<n; i=i+j) 

    { /* determining the information for the previous 
instruction i-j; prev stores this information */ 

       /* determining the information for the next 
instruction i; next stores this information */ 

if(strcmp(prev.rd,next.rs1)||strcmp(prev.rd,next.rs2))      
buffer[i][j-1] = 1; 

else buffer[i][j-1]=0; 

if(strcmp(next.rd, prev.rs1)||strcmp(next.rd,prev.rs2)) 
buffer[i][j-1] |=2 ; 

 if(strcmp(next.rd,prev.rd)buffer[i][j-1]|=4 ;  
 } 
} 

It is more appropriate to treat the result data buffer as 
a matrix. The matrix rows define whether there is 
data dependency between instructions. The matrix 
columns define in which neighbor instruction there is 
data dependency. For example, first column shows 
dependency between two-neighbor instructions; 
second column determines a dependency between 
three-neighbor instructions and so on. If all values in 
a matrix row are 0, it means that the instruction is 
independent. 

The algorithm detects data dependency between 
instructions in program order. It can be used for data 
flow analysis. The result data buffer contains 
information about out-of-order execution logic.  
 

4. APPLICATION OF SOFTWARE DATA 
DEPENDENCY DETECTION ALGORITHMS 

The represented algorithms are implemented in 
software simulator of Intel Pentium architecture.  

Simulation is a frequently used technique in 
computer architecture development. The software 
simulators could be used as a tool for studying these 
architectures and optimisation processes. The 
existing demo programs show these principals just as 
an overall picture. The reason to create a new 
simulator is to show the base concepts of the Intel 
Pentium processors working by means of short 
assembler programs. This simulator could be used 
also for source code efficiency evaluation.  
(Zaharieva-Stoyanova, 2002) 

The existing demo programs, for example DynExec, 
show these principals just as an overall picture. The 
reason to create a new simulator is to show the base 
concepts of the Intel Pentium processors working by 
means of short assembler programs. This simulator 
could be used also for source code efficiency 
evaluation.  This type of simulator would be very 
useful in higher-school education to illustrate the 
pipelining in a superscalar architecture. Moreover, it 
shows a commonly used real processor as Intel 
Pentium. 



The base structure of Intel Pentium processor 
simulation model of is shown on fig. 2. The Graphics 
User Interface (GUI) consists of the following forms: 

• Coupling of Instructions - it defines 
whether two instructions can be coupled and 
executed simultaneously avoiding data hazard. 

• Source code window - it shows the source 
code and the currently executed instructions in the 
code segment (.code). The currently executed 
instructions are shown as well. 

• Branch Prediction - this program simulates 
the functioning of branch prediction. If there is a 
jump, a branch, or a call instruction, branch 
prediction proceeds to predict if the branch shall be 
taken or not.  • Data window – it shows the contents of the 

memory bytes, where the standard data segment 
(.data) is allocated. 

The simulator of IA-32 architecture consists of four 
base modules. One of them is Coupling of 
instructions. It determines whether two instructions 
can be coupled and executed together avoiding data 
hazards.  In this paper the algorithm of module 
Coupling of instructions is represented.  

• Stack window – it shows the contents of the 
memory bytes, where the stack segment (.stack) is 
allocated. 

• Registers window -  it shows the contents of 
general-purpose registers (EAX, EBX, ECX, EDX, 
EBP, ESI, EDI) and the flags (Eflags). At the 
beginning the registers are cleaned. 

Each program instruction gives itself the following 
information: 

• a source operand; 
• Pipelines window - this is a graphics 

representation of the work of the two pipelines for 
the next 5 -10 cycles.  

• a destination operand. 

• is it a simple instruction or not; 
 

• is it an ALU instruction or not; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load 
Source 

Stack 
Window 

Execution Control 

Branch 
Prediction 

Coupling of 
Instructions 

Cycles per 
Instruction 

Registers 
Window 

Pipelines 
Window Data 

Window 

Source 
Code 

Window 

According to the decoupling rules, only hardware-
executed instructions can be decoupled and executed 
together. This kind of instructions are: MOV, LEA, 
PUSH, POP; ALU type instructions like ADD, ADC, 
SUB, SBB, AND, OR, XOR, NOT. 

ALU type instructions need two sources. Intel 
Pentium has mixed architecture - between RISC and 
CISC. IA-32 instructions use two data operands, so 
instructions like ADD use the same operand for 
destination and first source. That is why it is 
necessary to know if it is an ALU instruction or not. 

The algorithm for detection of data dependency gives 
information about dependency of a two-neighbor 
instruction. It is more interesting to find data 
dependency between more than two-neighbor 
instructions. The second algorithm detects this kind 
of data dependency. 

This information is described as follows: 

struct  instruction_info  

{  char destination[4]; 
Fig. 2. The structure of Intel Pentium architecture 

software simulator    char source[4]; 

   unsigned char s_type:1;  
Apart from the GUI, the program includes the 
following modules:    unsigned  char  alu_type:1; 

• Load Source – it loads source code in the 
simulator. It also finds syntax errors in the source; 

 }; 

If the instruction is hardware-executed, s_type is 1; if 
the instruction is one of ADD, ADC, SUB, SBB, 
AND, OR, XOR, NOT, alu_type is 1. Destination 
and source are destination/source data or register.  

• Cycles per Instruction  – it defines the 
number of the cycles needed for the execution of the 
current instruction; it also determines the type, the 
number of the operands, and the address mode. The algorithm works as follows: 

struct instruction_info prev, next;   



/* prev, next keep information about two neighbors 
instructions */ 

int i, n;  // n is number of instructions 

unsigned char *buffer; // the result buffer 

*buffer = 0; // first instruction is independent 

buffer = new char [n]; 

for (i=1; i<n; i++) 

 { /* determining the information for the  previous 
instruction i-1; prev stores this information */ 

    /* determining the information for next instruction 
i; next stores this information */ 

 if(strcmp(prev.destination,next.source))buffer[I]=1; 

   else *(buffer+i) = 0; 

 if((next.alu_type)&&strcmp(prev.destination 
,next.destination) buffer[I] = 1; 

} 

delete [] buffer; 

The real program verifies if the source and 
destination registers are identical. For example, 
registers EAX and AX are identical but the registers 
AH and AL is not.  

This algorithm is realized by a function in the 
Coupling of instructions module, which searches for 
independent instructions to decouple. 

 
5. CONCLUSION 

Instruction-level parallelism makes it possible to 
execute more than one instruction per cycle. Today’s 
processors use more than one pipeline, which means 
that they have superscalar architecture.  

Instruction-level parallelism increases the 
performance but an ideal sequence of uniform 
instructions is rare. The execution of one instruction 
often depends on the result of the previous 
instruction’s execution. This situation is called data 
hazard. Data hazards reduce the architecture 
performance. 

This paper treats the problem of detection of data 
hazards in superscalar execution. The algorithms of 
independent instruction detection are represented.  

The firs algorithm is implemented in a software 
simulator, which represents the way the Intel 
Pentium Processor works. It can be used in out-of-
order execution logic. 

Simulating and showing all processes related with 
Pentium processor working at real-time is too hard 
task and it is not necessary for the objective of this 
research. The objective is creation of a simulator, 
which is able to show the pipelining in a superscalar 
architecture using a real existing architecture as an 
example. 

To be created a software simulator of Intel Pentium 
processors' functionality, it is necessary to simulate 
data flow analysis. In this paper the algorithm of 
independent instruction detection is represented. The 
first version of the algorithm is used in a program 
module Coupling of instruction, which is a part of 
software simulator of IA-32 architecture. The 
advanced algorithm is able to detect data dependency 
between more than two instructions. It can be used in 
out-of-order execution logic. 
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