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Abstract: Mathematics and computer programming have a major contribution to 
chemistry. Two directions can be identified: one that searches and tries (rich) to 
explain the structural binding and shape of the chemical compounds [1] with major 
applications in QSPR/QSAR studies [2], and applied sciences such as engineering of 
materials or agriculture [3]; the second direction is to models the kinetic processes 
that are involved in chemical reactions [4]. Many such models are available here. 
The present paper describes three variants of well the known kinetic models and 
presents the mathematical equations associated with them. The differential equations 
are numerically solved and fitted with MathCad program. 
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1. Introduction 
 

 The oscillating reactions are the most spectacular and essential for life. All live 
processes are based on one or more oscillating reactions.  
 The possibility of periodically altering the concentrations of the reactants, the agents 
and the product, in space and time, is a result of the autocatalysis. Fig. 1 represents two 
temporary aspects of the space distribution (distribution in space) of the reaction products 
through the concentration wave front in the proximity of the electron participates in the 
reaction as a reactant. 
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Fig. 1 Concentration gradient in an oscillating reaction at the t, and at the t + ∆t moments; 

Avi animation: http://lori.east.utcluj.ro/free/RO.avi 
 

 The oscillating reactions are more than a laboratory curiosity. If in the industrial 
processes they appear in few cases, in biochemical systems there are numerous examples of 
oscillating reactions. For instance, the oscillating reactions maintain the rhythm. 

 

http://lori.east.utcluj.ro/free/RO.avi


 A general characteristic of the oscillating reactions in that, under the same conditions, 
all the participants from the reaction chain oscillate with the same frequency but a different 
displacement (lagging) shift. 
 

2. Lotka – Volterra autocatalytic oscillator model 
 

 For the first time Lotka [5] suggested a mechanism of a complex reaction, în 
homogeneous phase (stage), which shows damped oscillations. Ten years later, in his paper, 
[6] Lotka modified the mechanism suggested in 1910 in order to generate undamped 
oscillations.  

The mechanism is named Lotka-Volterra and it is further presented. The following 
pattern of reactions is considered: 

 
  R + X → 2X, υ = κ1·[R]·[X]    (a) 
  X + Y → 2Y, υ = κ2·[X]·[Y]    (b) 
  Y → P,  υ = κ3·[Y]    (c) 
  P → ,  υ = κ4·[P]    (d)  (1) 
 
 The last equation (1d), represents an extraction process of the reaction product P, 
while the stages (1a) and (1b) are autocatalytic. 

In Lotka–Volterra model of the reaction mechanism, concentration of the reactant R is 
maintained constant, (for example either by an addition in the reaction vessel or by an 
equilibrium between two non-miscible phases when necessary). These restrictions cause the 
concentrations of X and Y intermediaries/agents to be variable / changeable / unsteady: 
 

  
dt

]X[d = υ(29a) − υ(29b) = κ1·[R]·[X] − κ2·[X]·[Y]    (2) 

 

  
dt

]Y[d = υ(29b) − υ(29c) = κ2·[X]·[Y] − κ3·[Y]    (3) 

 
(2) and (3) equations form a system of differential equations with the functions [X] = [X](t) 
and [Y] = [Y](t). This system can be simply solved by a numerical method [7]. Thus the 
equations (2) and (3) became: 
 
  xn+1 = xn+ (tn+1-tn)·xn·(κ1·[R]-κ2·yn)      (4) 
 
  yn+1 = yn+(tn+1-tn)·yn·(κ2·xn-κ3)      (5) 
 
 With numerical values: 
 
  x0 = [X]0 = 1, y0 = [Y]0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, [R] = 2  (6) 
 
there can be produced/generated the numerical series/systems (xn)n≥0 şi (yn)n≥0 corresponding 
to the temporal  series (tn)n≥0. 
 In order to obtain an as faithful representation of the mechanism as possible a very 
fine/careful division of the temporal coordinate in the numerical simulation is required. 

Thus, considering the series tn = n/105 with n = 0,1..5·105 there are obtained the 
representations from fig. 2 for the  concentration of the intermediaries [X] = (xn)n≥0 şi [Y] = 
(yn)n≥0. 
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Fig. 2 The oscillation of the intermediaries and the variation path ([X],[Y]) in L-V mechanism 
 
 In the fig. 3 the concentration of the reaction product [P] develops/grows in the time 
through Pn (the equations 1c and 1d, taking κ4 = 3). 

Carrying out/performing the regression resulted from the equation (1c) and 
represented in fig. 3, by pn , according to the concentration [P] and depending on time, the 
regression slope gives the average rate of formation equal to 1.481. 
 There are a few remarks to be made, namely: the sum of average concentrations of the 
agents is maintained in time as the regression equation xyn also shows (the slope of the 
regression equation is null). 

This average sum M([X]) + M([Y]) = 1.365; hence it results that the average 
concentrations of the agents also remain constant in time; the values of the average 
concentrations are M([Y]) = 1.468 şi M([Y]) = 1.263. 
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Fig. 3 The variation of the product concentration and storage in L-V mechanism 

 
 3. A model of damped oscillations 
 
 Let it be a chemical process that takes place according to the following model of a 
reaction mechanism: 
 
  R1 → X,  υ = κ1·[R1]   (a) 
  2X + Y → 3Y,  υ = κ2·[X]2·[Y]   (b) 
  R2 + X → Y + P1, υ = κ3·[R2]·[X]   (c) 
  Y → P2,  υ = κ4·[Y]   (d)  (7) 
 
 As in Lotka – Volterra, model, the concentrations of the R1 şi R2 reacting substances 
remain constant during the process. 
 The solving of the model begins by writing the variation equation for the 
intermediaries: 
 

 



 
dt

]X[d = υ(34a) − 2·υ(34b) − υ(34c) = κ1·[R1] − 2·κ2·[X]2·[Y] − κ3·[R2]·[X]  (8) 

 

 
dt

]Y[d = 2·υ(34b) + υ(34c) − υ(34d) = 2·κ2·[X]2·[Y] + κ3·[R2]·[X] − κ4·[Y]  (9) 

 
 The equations (8) and (9) form a system of differential equations having the functions 
[X] = [X](t) şi [Y] = [Y](t). This system may also be easily solved by a numerical method. 
The equations (8, 9) are written thus: 
 
  xn+1 = xn+(tn+1-tn)·(κ1·[R1]-xn·(2·κ2·xn·yn+κ3·[R2]))   (10) 
 
  yn+1 = yn+(tn+1-tn)·(xn·(2·κ2·xn·yn+κ3·[R2])-κ4·yn)    (11) 
 
 Having the numerical value: 
 
  x0 = 0, y0 = 1, κ1 = 3, κ2 = 4, κ3 = 5, κ4 = 7, [R1] = 2, [R2] = 2  (12) 
 
there can be generated the numerical series (xn)n≥0 şi (yn)n≥0 corresponding to the temporal 
series (tn)n≥0. Taking into account the series tn = n/100000 cu n = 0,1..300000 there are 
obtained the representation from fig. 4 for the concentrations of the intermediaries [X] = 
(xn)n≥0 şi [Y] = (yn)n≥0. 
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Fig. 4 The damped oscillations in chemical reactions: 

the concentration of the intermediaries X, and the concentration of the intermediaries Y 
 
Fig. 4 shows that the system tends towards a state of equilibrium state characterized a 

ratio of the concentrations of the two intermediaries. The system of the agents practically 
causes damped oscillations around of the equilibrium ratio for two intermediaries. 
 The chart representing the agent concentration [Y] depending on the agent 
concentration [X] from fig. 5 shows the same thing. 
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Fig. 5 The damped oscillation path ([X],[Y]) 

 



 The values obtained for the equilibrium concentration are [X] = 2.315 and [Y] = 
0.176 and the equilibrium ratio are [X]/[Y] = 13.53. 
 The dependence on time (tn)n≥0 of the accumulation of the reaction products [P1] = 
(p1n)n≥0 şi [P2] = (p2n)n≥0 is given in fig. 6.  
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Fig. 6 The linear variation of the amount of products in damped oscillating reactions 

 
Fig. 6 shows that this time the concentration of the reaction products changes linearity 

even if the concentrations of the agents X şi Y oscillate towards the equilibrium value. 
 
3. The brussel model of autocatalytic oscillation 
 

 The brussel model was initiated by a group from Bruxelles directed by Ilya Prigogine 
it introduce for the first time, mechanism of a reaction whose scheme of evolution converged 
on an attractor [8]. 

More authors have changed this variant and have studied the systems running 
according to this mechanism [9,10]. Further, a simplified variant is presented: 
 
  R → X,   υ = κ1·[R]   (a) 
  X + 2Y → 3Y,  υ = κ2·[X]·[Y]2   (b) 
  Y → P,   υ = κ3·[Y]   (c)  (13) 
 
 As in the previous situations it is supposed that the concentration of the reacting 
substance R remains constant and the product P may be extracted from the system by a 
reaction of the type (7d). 
 X and Y are the intermediaries again. Their speed equations written on the basis of the 
mechanism (13) are: 
 

  
dt

]X[d = υ(39a) − υ(39b) = κ1·[R1] − κ2·[X]·[Y]2     (14) 

 

  
dt

]Y[d = υ(39b) − υ(39c) = κ2·[X]·[Y]2 − κ3·[Y]    (15) 

 
Though the equations (14) and (15) seem simpler, at first sight, they are even more 

difficult to be solved by integration than (2-3) or (8-9). Moreover, the literature has not 
recorded their integration into the general case described by (14-15). 

Besides, the equations (14-15) do not lead to an attractor model not matter by values 
of the constants of speed and of the concentrations [R], [X]0 and [Y]0. The attempt of solving 
(14-15) is full of surprises. For most of the values a system which develops towards a position 
of equilibrium is obtained; there are values for which damped oscillations to equilibrium are 

 



found again; the undamped periodical oscillations have also an important role, which is 
confirmed by the majority of the organisms in which the cellular biochemical processes are 
based on such oscillations. 

The processes taking place within the heart are a conclusive example; the periodical 
heart beats are due to processes of this type. The importance of these processes is great. This 
was the reason for which Ilya Prigogine was awarded the Nobel Prize for chemistry in 1977, 
namely for his theories on the dissipative systems. 
 The equations (14-15) are simplified [11] if [R] = 1, κ1 = 1 şi κ3 = 1, are chosen and 
when the differential system of equations becomes: 
 
  = 1 – κx& 2·x·y2; = κy& 2·x·y2 – y      (16) 
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Fig. 7 The concentrations of the intermediaries up to the attractor for two cases with different 

initial conditions 
 

where the derivate related to the time of the x variable was . This system of the differential 
equation (16) does not offer more chances for an exact resolution either. However, the 
numerical simulation is made in the same way. Thus the iteration equation of variation for 
(16) is written: 

x&

 
  xn+1 = xn+(tn+1-tn)·(1-κ2·xn·yn

2); yn+1 = yn+(tn+1-tn)·(κ2·xn·yn
2-yn)  (17) 

 
 Now choosing κ2 = 0.88 and taking into consideration two cases, the first one in 
which the initial concentrations of the agents are x10 = [X]1,0 = 1.5 and y10 = [Y]1,0 = 2 and 
second case in which x20 = [X]2,0 = 2 şi y20 = [Y]2,0 = 2.5 and the series tn = n/100 with n = 
0,1..150 following representations for the concentrations of the agents [X] = (xn)n≥0 and [Y] = 
(yn)n≥0 are obtained (fig. 7). And the variation diagram of [Y] depending on [X] and the 
variation in time of the storage of reaction product is (fig. 8). 
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Fig. 8 The entrance of  [Y] related to [X] on the same gravitational orbit for  

different product quantities obtained in two cases having different initial conditions 
 

 



 If the fig. 7 are not very conclusive and fig. 8 seems to confirm this, fig. 8 shows that, 
though the two systems start from different values of the concentrations of the agents, in both 
cases the system comes to evolve rather early on the same trajectory. 

Now, increasing the time interval by choosing another n = 0,1..3000 the following 
concentrations of the agents are obtained [X]1 = (x1n)n≥0, [X]2 = (x2n)n≥0, [Y]2 = (y2n)n≥0 şi 
[Y]2 = (y2n)n≥0 for the two cases 1 and 2 of the chosen system (fig. 11). It is noticed that, even 
if they do not evolve according the same values, same period and amplitude of the oscillations 
are recorded. Fig. 9 gives the dependence of [Y] under [X] for the cases as well as the 
accumulation of the product. 
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Fig. 9 The periodical evolution having the same oscillation period 

T = 0.226 of [X] and [Y], for two cases having different initial conditions 
 
 The difference between the Lotka-Voltera model and Bruxelles model one is the 
following: The Lotka-Voltera model oscillates around the initial values of the concentrations 
of the agents, whereas the Bruxelles one converges, in time on the same variation equation 
irrespective of the initial values of the concentrations of the agents. In fact the attractor does 
not appear for any of their values; for a given k2 there are minimum y0,min şi x0,min values from 
which the periodical oscillations arise and the system tends towards the curve given in  fig. 
10. 
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Fig. 10 Convergence at atractor of brusselator system independent from initial conditions 

and different quantities of resulted product 
 

The convergence on the attractor of the brusselator system independent of the initial 
conditions and (b) different quantities of the product obtained. 

 
4. Conclusions 

 There exist a many models of biochemical processes reactions, and every process has 
some characteristics, as we described below. 

The importance of every mechanism is given by his applications. 
As we mentioned before, most spectacular and also important because is most 

frequent in nature is the brusselator model, every alive organism has one. 
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