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Introduction 

 

QSPRs (Quantitative Structure-Property Relationships) link quantitatively the 

physico-chemical properties of chemical compounds with the molecular structure. They 

provide mathematical models aimed to accurately predict a certain property from the 

structural attributes. 

Some molecular properties (i.e. those of which numerical value vary with changes in 

the molecular structure) such as the normal boiling point, critical parameters, viscosity, 

solubility, retention chromatographic index, are often used for characterizing chemicals in 

databases. However, a certain property is not always available in tables or other reference 

sources. It is just the case of newly synthesized compounds. As a consequence, methods of 

estimation / prediction of physico-chemical properties from the structural features of organic



molecules become very important. The advent of combinatorial chemistry in the last decade 

required automated procedures for predicting various molecular properties. 

 Monitoring the environmental pollution needs the prediction of toxicity of chemicals 

in air, waste waters and sole. QSARs (Quantitative Structure-Property Relationships) can be 

used to predict the toxicity accurately, without using more expensive experimental methods. 

Drug research and production is also related to the QSAR techniques. 

 QSPRs/QSARs thus relate a molecular property, shown by a series of chemicals, to 

the structure encoded by a set of descriptors.  

 In the past works, investigators looked for easily obtainable descriptors.1,2 As the 

computer technology developed, the attention of the descriptor designers turned toward more 

elaborated descriptors, with enhanced ability in modeling a certain molecular property 

/activity. Large pools of descriptors were thus created.  

Nevertheless, a new problem arised: how to select, in real time, a subset of descriptors 

suitable for the optimal modeling of the chosen property? An algorithm doing such a task 

must be a simple one, rapid and convergent to a global optimum. Simulated annealing SA and 

genetic algorithms GA are already verified procedures.3-7 

 In this paper a new approach, leading to a fragmental property index family, FPIF, is 

presented. These indices are calculated as local descriptors of some fragments of the molecule 

and, a global index is then obtained by summing the fragmental contributions. The modeling 

ability of FPIF is demonstrated on selected sets of organic compounds. 

 

Fragmentation Criteria 

 

 The fragmentation criteria define the basic topological descriptors: CJ, CF and Sz. 

The fragments are just the entries in the Cluj and Szeged matrices,8-17 respectively. Before 

defining these matrices, some graph-theoretical background is needed. 

 Let G = (V, E) be a connected graph, with V being the set of vertices and E ⊂ V x V 

the set of edges. 

A walk w is an alternating string of vertices and edges, w1,n = (v1, e1, v2, e2, ..., vn-1, 

em, vn), vi ∈ V(G ), ei ∈ E(G ), m ≥  n - 1, such that any subsequent pair of vertices (vi-1, vi) ∈ 

E(G). Revisiting of vertices and edges is allowed. Then V(w1,n) = {v1, v2, ..., vn-1, vn} is the 

set of vertices of w1,n. Similarly, E(w1,n) = {e1, e2, ..., em-1,  em } is the set of edges of w1,n



 The length of a walk, l(w1,n) = E(w1,n) ≥  V(w1,n) - 1, equals to the number of its 

traversed edges. The walk is closed if v1 = vn (i.e. its endpoints coincide) and is open 

otherwise. The set of all walks in G is denoted by W(G). 

A path p is a walk having all its vertices and edges distinct: vi ≠ vj, (vi-1, vi) ≠ (vj-1, vj) 

for any 1 ≤ i < j ≤ n. As a consequence, the revisiting of vertices and edges, as well as 

branching, is prohibited. The length of a path is l(p1,n) = E(p1,n) = V(p1,n)- 1. A closed 

path is a cycle (i.e. circuit). The set of all paths in G is denoted by P(G).  

A terminal path tp1,n is the path involving a walk w = v1, e1, v2, ...,vn, en, vk, that is no 

more a path in G, for any vk ∈ V(G)  such that (vn, vk) = en ∈ E. 

A path is Hamiltonian if n = |V(G)| . In words, a Hamiltonian path visits once all the 

vertices in G. If such a path is a closed one, then it is a Hamiltonian circuit.  

The distance, dij, between two vertices vi and vj is the length of a shortest path joining 

them, if exists: dij = min l(pij);  otherwise dij = ∞. A shortest path is often called a geodesic. 

The eccentricity of a vertex i, ecci, is the maximum distance between i and any vertex j of G: 

ecci = max dij. The radius of a graph, r(G), is the minimum eccentricity among all vertices i 

in G:  r(G) = min ecci = min max dij. Conversely, the diameter, d(G), is the maximum 

eccentricity in G: d(G) = max ecci = max max dij. The set of all geodesics (i.e. distances) in G 

is denoted by D(G). 

 The detour, δij, between two vertices vi and vj is the length of a longest path joining 

these vertices, if exists: δij = max l( pij);  otherwise δij = ∞. The set of all detours (i.e. longest 

paths) in G is denoted by ∆(G). 

 Resuming to the Cluj and Szeged matrix definition. 

Let p ∈D(G) or p ∈∆(G); the Cluj Fragments, CJ and CF represent the sets of vertices 

obeying the relations 

 
CJi,j,p = {v |v∈V(G);  d(G)v,i < d(G)v,j;  and  ∃ w∈Wv,i, V(w)∩V(p)  = {i}} 

       (1)  

CFi,j,p = {v  |v∈V(G); d(Gp)v , i  < d(Gp)v , j  ;  Gp = G – p         (2)  
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Here, Gp  = G - p is the spanning subgraph, resulted by deleting the path p joining the 

vertices i and j (except its endpoints), d(G) and d(Gp) denote the topological distances 

measured in G and Gp , respectively, and D(G) and ∆(G) have the above mentioned meaning. 

The sets CJi,j,p and CFi,j,p represent subgraphs (connected or not) in G, related to the 

endpoint  i and referred to j and path p.  

In Cluj fragmentation criteria, the path p plays the central role in selecting the 

fragments. In cycle-containing graphs, more than one path could join the pair (i,j) thus 

resulting more than one fragment related to i, so that we define the nondiagonal entries [UM]ij 

in the Cluj matrices as the maximum cardinality of the sets defined by eqs 1 or 2 

  pj,i,
p

Vmax
ij
=[UM]                        (3) 

where M = CJD  (Cluj-Distance, p ∈D(G)); CJ∆ (Cluj-Detour, p ∈∆(G)), CFD (Cluj-

Fragmental-Distance, p ∈D(G)) and CF∆ (Cluj-Fragmental-Detour, p ∈∆(G)), and p,j,iV  is 

the cardinality of the set CJi,j,p or CFi,j,p. The diagonal entries are zero. The above definitions 

hold for any connected graph.  

The Cluj matrices are square arrays, of dimension N x N, usually unsymmetric 

(excepting some symmetric regular graphs). They can be symmetrized, e.g., by the Hadamard 

product with their transposes 

SMp = UM • (UM)T         (4) 

SMe = SMp • A         (5) 

The symbol • indicates the Hadamard (pairwise) matrix product18 ([Ma•Mb]ij = [Ma]ij [Mb] ij). 

For the symmetric matrices, the letter S is usually missing. In eq 5, the Hadamard product 

between the path-defined matrix SMp and the adjacency matrix A (i.e. the matrix having the 

non-diagonal entries unity for two adjacent vertices and zero otherwise) provides the 

corresponding edge-defined matrix, SMe, which is a weighted adjacency matrix. 

In trees, CJD , CJ∆ , CF∆ and CF∆, are identical, due to the uniqueness of the path 

joining a pair of vertices (i,j). Some special properties of Cluj matrices were exposed 

elsewhere.10,12,15 

As noted above, the sets CJ i,j,p and CFi,j,p represent subgraphs in G, either connected 

or not, related to the endpoint i and referred to j and path p. The connectivity of CF sets was 
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demonstrated elswhere.19 A case in which CJDi,j,p is disconnected while CFDi,j,p is connected 

is illustrated in Figure 1. Along with the Cluj matrices, the sets CJi,j,p and CFi,j,p are presented 

as well. 
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 CJD i,j,p  CFD i,j,p 

( 2, 8) [ 2, 4, 7, 6, 8] 

   {2,1,5} 

(disconnected) 

( 2, 8) [ 2, 1, 3, 6, 8] 

   { 2, 4, 5} 

( 8, 2) [ 8, 6, 3, 1, 2] 

   { 8} 

( 8, 2) [ 8, 6, 7, 4, 2] 

   { 8} 
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( 2, 8) [ 2, 4, 7, 6, 8] 

   { 2,1, 3, 5} 

( 2, 8) [ 2, 1, 3, 6, 8] 

   { 2, 4, 5, 7} 

( 8, 2) [ 8, 6, 3, 1, 2] 

   { 8} 

 ( 8, 2) [ 8, 6, 7, 4, 2] 

   { 8} 
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Figure 1.Unsymmetric Cluj matrices and fragmentation for the graph G1. 

G1 

 1 2 3 4 5 6 7 8 
1 0 4 2 2 2 2 3 5 
2 3 0 2 2 2 3 2 4 
3 5 4 0 4 4 4 3 6 
4 3 5 3 0 3 3 4 5 
5 5 5 2 2 0 4 4 5 
6 3 4 3 3 3 0 4 7 
7 3 3 2 3 3 3 0 6 
8 1 1 1 1 1 1 1 0 

 1 2 3 4 5 6 7 8
1 0 4 2 2 2 2 2 4
2 3 0 2 2 2 2 2 3
3 5 4 0 4 4 4 3 5
4 3 5 3 0 3 3 4 4
5 3 4 2 2 0 3 3 4
6 3 3 3 3 3 0 4 7
7 3 3 2 3 3 3 0 4
8 1 1 1 1 1 1 1 0
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 CJ∆i,j,p  CF∆i,j,p 

(3, 5) [3,1,2,4,5] 

   {3,6,8} 

(3, 5) [3,6,7,4,5] 

   {3,1} 

(5, 3) [5,4,2,1,3] 

   {5} 

(5, 3) [5,4,7,6,3] 

   {5} 
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(3, 5) [3,1,2,4,5] 

   {3,6,7,8} 

(3, 5) [3,6,7,4,5] 

   {3,1,2} 

(5, 3) [5,4,2,1,3] 

   {5} 
(5, 3) [5,4,7,6,3] 

   {5} 
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Figure 1. (continued)  

 

 An interesting property is shown by the detour-based matrices: CJ∆p and CF∆p. Let 

consider the vertices 8 (of degree 1) and 5 (of degree 2) in G1, Figure 1. The vertex 8 is an 

external vertex (with a terminal path ending in it) while the vertex 5 is an internal one 

(usually a terminal path not ending in it). An external vertex, like 8, shows all its entries in the 

Cluj matrices equal to 1 (see Figure 1). The same entries are shown by the internal vertex 5. 

This unusual property is called the internal ending of all detours joining a vertex i and the 

remaining vertices in G. Such a vertex is called an internal endpoint.15 There exist graphs 

with all the vertices internal endpoints and their detours are Hamiltonian paths now. This kind 

of graph we call the full Hamiltonian detour graph, FH∆.19 

1 2 3 4 5 6 7 8 
1 0 1 1 1 1 2 1 2 
2 1 0 1 1 1 1 2 1 
3 2 2 0 3 4 2 2 2 
4 2 2 2 0 4 2 2 3 
5 1 1 1 1 0 1 1 1 
6 3 2 2 2 2 0 2 7 
7 1 3 1 1 1 1 0 1 
8 1 1 1 1 1 1 1 0 

 1 2 3 4 5 6 7 8
1 0 1 1 1 1 2 1 2
2 1 0 1 1 1 1 2 1
3 2 2 0 3 3 2 2 2
4 2 2 2 0 2 2 2 3
5 1 1 1 1 0 1 1 1
6 3 2 2 2 2 0 2 7
7 1 3 1 1 1 1 0 1
8 1 1 1 1 1 1 1 0
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According to eq 3, sets of maximal fragments M
j,iCJDS , M

j,iSCJ∆ , M
j,iCFDS  and 

M
j,iSCF∆  are expected in some graphs. This observation is important in the calculation of Cluj 

property indices (see the next section). 

Szeged  Fragments, SZDi,j and SZ∆i,j are defined by the equations: 

 

SZDi,j  = {v| v∈ V(G);   d(G)v,i < d(G)v,j  } (6)

SZ∆i,j  = {v | v∈ V(G);  δ( G) v,i < δ( G) v,j } (7)

  

These fragments represent the entries in the unsymmetric Szeged matrices, USZD and 

USZ∆.19  In eq 5, δ(G)v,i represents the detour between the vertices i and v.  

Note that in the definition of the Szeged fragments, the path joining the vertices i and j 

is irrelevant. Thus, in Szeged fragmentation criteria, each pair (i,j) effects one and only one 

fragment. It was demonstrated elsewhere19 that the Szeged sets SZDi,j represent connected 

subgraphs (i.e. fragments) while SZ∆i,j are not necessary connected. 

 In any graph, CJDe = CFDe = SZDe. In cyclic graphs, CJDp ≠ CFDp ≠ SZDp , CJ∆p 

≠ CF∆p ≠ SZ∆p.  

 

Fragmental Property Indices 

 

Model Parameters 

 It is well known that the physical laws govern the natural phenomena. Macroscopic 

interactions are interactions of field-type. The field is produced by a scalar function of 

potential. Let f(x, y, z) be such a scalar function. This function induces a field given in terms 

of the gradient of f: 
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 For the potential of type  

 f(x, y, z) = pz          (9) 

and applying eq 8 we obtain the associated field, in the form: 
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This is the case of the well-known uniform gravitational field: 

 gmG
rr

=           (11) 

the potential of which is given by  

 mgzzEE pp == )(          (12) 

where m is the mass of the probe and z is the reference coordinate. 

 Note that eq 10 is applicable not only to the Newtonian (gravitational) interactions but 

also to the Coulombian (electrostatic) interactions. In both cases the relation is valid if the 

mass m (or the charge q) that generates the potential f and associated field f⋅∇
r

  is far enough 

(r >> z) for the approximation (r + z)2/r2 = (r2 + 2rz + z2)/r2 = 1 + 2z/r + (z/r)2 ≅ 1  be applied 

in the equation of field produced by m or q (see below). 

 For the potential of type: 

 f(x, y, z) = p/z           (13) 

eq 8 leads to the associated field: 
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 This is the case of well-known (non-uniform) gravitational field given by: 

 r
r
mkr,mGG
rvr

3)( −==         (15) 

and the associated potential of the form: 

 
r
mkr,mUU == )(          (16) 

where m is the mass of the probe and r is the position relative to the location of the point 

producing the field. 

 For the Coulombian field eq 14 becomes: 

 r
r
qkrFF CC
rrr

3)( −==         (17) 

and the potential associated to the Coulombian field: 
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r
qkr,qUU == )(          (18) 

 For fragmental property indices four models of interaction are implemented:19 two of 

them are topological (dense topological and rare topological) and two others are geometric 

(dense geometric and rare geometric).  

 The models are related to two types of field interactions: one of weak dependence on 

distance for the potential of the type (9) generating a uniform field (10), and the second, of 

strong dependence on distance for the potential of the type (13) that generates a non-uniform 

field (14). 

 The variables in the models are metrics of distance d (topological dT and geometric 

dE), properties Φ (mass M, electronegativity E, cardinality C, partial charge or any other 

atomic property P), property descriptors Ω (p, d, pd, 1/p, 1/d, p/d, p/d2, p2/d2) and method of 

superposition Ψ (S, P, A, G, H). 

Let x1, …, xn be rational numbers; the (mathematical) superposition is 

     Ψ:  S ∑
=

=
n

i
ix

1
;  P ∏

=
=

n

i
ix
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;  A n/S= ;  G ( ) nn )P(abssgn(P) ⋅= ;  H 
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The expressions for the property descriptors are: 

Ω : p p= ;  d d= ;  pd dp ⋅= ; 1/p 
p
1

= ; 1/d 
d
1

= ;  p/d 
d
p

= ;  p/d2 2d
p

= ;  p2/d2 2

2

d
p

=  

          (20) 

where p is any property (p ∈ Φ) and d is any metric of distance. 

 These variables are most frequently used in our models by the following reasons: 

- The expressions of the property descriptor Ω simulate the most occurring physical 

interactions (e.g. p, pd, p/d, p/d2, p2/d2)20 and the most usual descriptors in topological and 

geometric models. The property descriptor is used either in the calculation of the vertex 

descriptor (when d is the distance from the vertex v to j and p is any atomic property) or in the 

evaluation of the fragment descriptor (when d is the distance between the center of property 

of the fragment and j, while p is a calculated fragment property). 

- The (mathematical) superposition is applied upon a string of vertex descriptors for 

giving a fragment descriptor. Note that Ψ means S = sum; P = product; A = arithmetic mean; 

G = geometric mean and H = harmonic sum. The summation is suitable in the case of any 

additive property (mass, volume, partial charges, electric capacities, etc.).21 The multiplication 
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occurs in concurrent phenomena (probabilistically governed).22 The arithmetic mean is useful 

in evaluating some mean contributions (corresponding to some uniform probabilistic 

distribution).23,24 The geometric mean is used in calculating the group electronegativities.25,26 

Finally, the harmonic sum is important in connection with the elastic forces, electric fields 

and group mobility in viscous media.27 

 

Model Descriptions 

 

 Let (i,j) be a pair of vertices and Fri,j any fragment related to i and referred to j. 

 

Dense Topological Model 

 Let v be a vertex in the fragment Fri,j. The property descriptor applies to the vertex 

property pv and topological distance dTv,j. The fragmental property descriptor PD, resulting 

by the vertex descriptor superposition, gives the interaction of all the points belonging to the 

fragment Fri,j with the point j: 

 PD( j,iFr ) =
j,iFrv

Ψ
∈

( Ω ( dT v,j , pv ) )       (21) 

The j point can be conceived as an internal probe atom  (see the CoMFA approach).28 

However, the chemical identity of j is not considered.  

 

Rare Topological Model 

 Within this model, the property descriptor applies to the fragmental property and 

topological distance dT i,j. The fragmental property descriptor models the interaction of the 

whole fragment Fri,j with the point j and looks the global property being  concentrated in the 

vertex i: 

 PD( j,iFr ) = Ω ( dT i,j ,
j,iFrv

Ψ
∈

( pv ))       (22) 

 

Dense Geometric Model  

 The fragmental property descriptor is the vector sum of the vertex descriptor vectors. 

It applies the property descriptor to the vertex property pv and the Euclidean distance dE,v,j in 

providing a point of equivalent (fragmental) property located at the Euclidean distance 
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j,iCP,Ed   (with j,iCP,Ed  being the distance between the center of fragmental property CP, of 

j,iFr , and the vertex j). The vector of the fragmental property has the orientation of this 

distance vector. The model simulates the interactions in non-uniform fields (gravitational, 

electrostatic, etc): 

 PD( j,iFr ) = ( )vj,vE
Frv

p,d
j,i
Ω

∈
Σ

r
;    Ω

r
= Ω⋅

j,vE

j,vE
d
d
r

;     P( j,iFr ) = )p(Ψ v
Frv j,i∈

; 

 j,iCP,Ed = 1−Ω p ( DG( j,iFr ),P( j,iFr )),       (23) 

 where j,iCP,Ed   is the distance that satisfies: Ω( j,iCP,Ed  , P( j,iFr ) ) = PD( j,iFr ) 

 

Rare Geometric Model 

 The scalar fragmental descriptor applies the property descriptor to the center of 

fragmental property and Euclidean distance between this center and the vertex j.  

The model simulates the interactions in uniform fields (uniform gravitational, electrostatic, 

etc.): 

 PD( j,iFr ) = Ω( j,iCP,Ed , )p(Ψ v
Frv j,i∈

);  

 CPi( j,CPi
x  , j,CPi

y  , j,CPi
z );   j,CPi

x   = ∑∑
∈∈

⋅
j,ij,i Frv
v

Frv
vv ppx    (24) 

 j,CPi
y   = ∑∑

∈∈
⋅

j,ij,i Frv
v

Frv
vv ppy ;   j,CPi

z   = ∑∑
∈∈

⋅
j,ij,i Frv
v

Frv
vv ppz  

 

Some Particular Fragmental Property Models 

 Let i, j be two vertices in V(G) and Fri,j any fragment related to i with respect to j. 

Fragmental Mass 

 In evaluating the fragmental mass, the chosen property is Φ = M, descriptor Ω = p, 

superposition Ψ = S, and the model is rare topological, RT. The fragmental mass descriptor 

takes the form: 
 

 PD(Fri,j) = 
j,iFrv∈

Σ Mv         (25) 
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It models the molecular mass of the fragment. The name of the associated property matrix is 

RTcDdM__p__S, with the known meaning for c and Dd.  

 If c = s and Dd = Di then RTsDiM__p__S, it models the molecular mass of the 

Szeged Distance Fragments (eq 6). If c = f and Dd = Di then the matrix RTfDiM__p__S 

collects mean values of mass of all the fragments belonging to i (with respect to j) according 

to the CF criterion (eqs 2 and 3). 

 
Fragmental Electronegativity 

 The well known equalizing principle of electronegativity E, is here considered: the 

fragment electronegativity is the geometric mean of electronegativities of the s atoms joined 

to form that fragment.  

 Let the property Φ  = E (electronegativity); descriptor Ω  = p; superposition Ψ = G; 

the model is rare topological, RT. The fragmental electronegativity descriptor is: 
 

 PD(Fri,j) |Fr| v
Frv

j,i
j,i
E

∈
Π=         (26) 

 It models the electronegativity of the fragment Fri,j. The name of the property matrix 

associated with it is RTcDdE__p__G . Note that Ev is the group electronegativity for vertex v 

calculated with formula: 
 

 ∑= Γ∈ ∏
Γ∈

vj

v

j,vb

j

j,vb
jav EE

)( )(         (27) 

where b(v, j) is the conventional bond order between v and j (e.g. 1, 1.5, 2, 3 for single, 

aromatic, double and triple bonding, respectively), Ea is the atomic electronegativity 

(Sanderson) and j∈Γv is any atom ( hydrogen atoms included) consisting the group Γv. 

 

Fragmental Numbers 

 The property Φ = C (cardinality) was introduced for recovering some graph-

theoretical quantities and/or graph theoretical analogue indices (see below).  

 For descriptor Ω = p, superposition Ψ = {P, A, G}, and the model rare topological, 

RT, the cardinal numbering descriptor of Fri,j is: 

 PD(Fri,j) = 11
1

1 =Π=

Σ

=Π
∈

∈

∈
|Fr|

Frvj,i

Frv

Frv
j,i

j,i

j,i

j,i |Fr|
     (28) 
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The arithmetic mean A, geometric mean G and product P applied to 1 (value for 

vertex property) leave it unchanged. The mean value for all fragments belonging to i vs. j (CJ 

and CF only) is also 1. All matrices RTcDdC__p__P, RTcDdC__p__A and 

RTcDdC__p__G have all their entries unity, except the main diagonal elements that are zero. 

The corresponding path-calculated indices give the number of edges in the complete 

graph having the same number of vertices N, as the considered molecular graph:  
 

 RTcDdC__p__PP_ = RTcDdC__p__AP_ = RTcDdC__p__GP_ = N(N - 1)/2 

Similarly, the edge-calculated indices, RTcDdC__p__PE_, RTcDdC__p__AE_, 

RTcDdC__p__GE_  give the number of edges in the molecular structure. 

Let now the property Φ = C, descriptor Ω = p, superposition Ψ = S and rare 

topological model. The value of cardinal numbering descriptor for Fri,j is: 

 
 PD(Fri,j) =

j,itFrv σ∈
Σ 1 = j,itFrσ        (29) 

It models the number of atoms in the fragment. The associated matrices are of the form 

RTcDdC__p__S: 
 

 RTfDiC__p__S = CFD ;        RTfDeC__p__S = CF∆  

 RTjDiC__p__S = CJD ;         RTjDeC__p__S = CJ∆  

RTsDiC__p__S = SZD ;        RTsDeC__p__S = SZ∆   

   
and the corresponding indices are exactly the graph-theoretical descriptors  corresponding to 

the Cluj and Szeged criteria (eqs 1-3, 6, 7). 

 

Uniform Field Gravity 

Let the property Φ = M, descriptor Ω = p/d2, superposition Ψ = S and rare 

geometrical model. 

The uniform gravity descriptor of Fri,j is calculated by: 

 

 PD(Fri,j) =
j,iFrv∈

Σ 2
j,v

v

d
M         (30) 
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 It models the value of the gravitational field induced by the fragment Fri,j in the point 

j. Values given by eq 30 are collected in the matrix RGsDdM_p/d2S while averaged  values 

are considered in RGfDdM_p/d2S and RGjDdM_p/d2S matrices. 

 

Non-Uniform Field Gravity 

Let the property Φ = M, descriptor Ω = p/d2, superposition Ψ = S and dense 

geometrical model. The distance (vs. j) of the center of equivalent fragmental gravity of Fri,j  

is: 
  

 j,iCP,Ed  =
2
1

22 















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
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
⋅⋅
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









⋅











∈∈∈
ΣΣΣ

j,v

j,v

j,v

v
Frvj,v

j,v

j,v

v
Frv

v
Frv d

d

d
M

d
d

d
MM

j,ij,ij,i

rr

 (31) 

It models the distance at which a point mass equal to the fragment mass ∑
∈ j,iFrv

vM  should 

be located vs. j such that the gravitational field induced by Fri,jj in j be equal to the field 

induced by all atoms of the fragment. The associated matrix is of the form DGcDdM_p/d2S. 

 

Uniform Electrostatic field 

Let the property Φ = P (QP implicitly, in the Cluj Program), descriptor Ω = p/d2, 

superposition Ψ  = S and rare geometrical model. The uniform electrostatic field descriptor of 

Fri,j is: 

 PD(Fri,j ) = 
j,iFrv∈

Σ
2

j,v

vP

d

Q
        (32) 

It models the value of electrostatic field induced by the fragment in j. The property matrix is 

of the form: RGcDdP_p/d2S. 

 

Non-Uniform Electrostatic Field 

For the property Φ = P (QP implicitly), descriptor Ω = p/d2, superposition Ψ = S and 

dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic field of 

Fri,j  is: 
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 j,iCP,Ed  =
2
1
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 (33) 

It models the distance at which a point charge equal to the fragment charge ∑
∈ j,i

v
Frv

PQ   

be located vs. j such that the electrostatic field induced by it in j be equal to the field induced 

by the all atoms of the fragment. The associated matrix is of the form: DGcDdP_p/d2S. 

 

Uniform Field Gravitational Potential 

It is obtained for the property Φ = M, descriptor Ω = p/d, superposition Ψ = S and 

rare geometrical model. The property descriptor of Fri,j  is: 
 

 PD(Fri,j ) =
j,iFrv∈

Σ
j,v

v

d
M         (34) 

It models the value of the gravitational potential induced by the fragment in j. The property 

matrix is of the form: RGcDdM_p/d_S. 

Non-Uniform Field-Type Gravitational Potential 

For the property Φ  = M; descriptor Ω = p/d; superposition Ψ = S; dense geometrical 

model, the distance (vs. j) of the center of equivalent fragmental gravity of Fri,j  is: 
 

 j,iCP,Ed  = 
2
1




























⋅Σ⋅













⋅Σ










Σ

∈∈∈ j,v

j,v

j,v

v
Frvj,v

j,v

j,v

v
Frv

v
Frv d

d

d

M
d
d

d

M
M

j,ij,ij,i

rr

  (35) 

It models the distance at which a point mass equal to the fragment mass ( ∑
∈ j,iFrv

vM ) should 

be located vs. j such that the gravitational potential induced by it in j be equal to the potential 

induced by the all atoms of the fragment. The associated matrix is of the form 

DGcDdM_p/d_S. 

 

Uniform Field Coulombian Potential 

It is obtained for the property Φ  = P (Qp implicitly), descriptor Ω = p/d, superposition 

Ψ = S and rare geometrical model. The electrostatic potential descriptor of Fri,j  is: 
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 PD(Fri,j ) =
j,iFrv∈

Σ
j,v

vP

d

Q
        (36) 

It models the value of the electrostatic potential induced by the fragment in j. The property 

matrix is of the form: RGcDdP_p/d_S. 

 

Non-Uniform Field Electrostatic Potential 

For the property Φ = P (QP implicitly); descriptor Ω = p/d; superposition Ψ = S and 

dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic potential 

of Fri,j is: 
 

j,iCP,Ed  = 
2
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  (37) 

It models the distance at which a point charge equal to the fragment charge ( ∑
∈ j,iFrv

vPQ ) 

should be located vs. j such that the electrostatic potential induced by it in j be equal to the 

potential induced by all the atoms of the fragment. The associated matrix is of the form 

DGcDdP_p/d_S. 

In all the above models, j appears as a virtual probe atom . In the opposite to the 

CoMFA approach, whose descriptors are calculated as interactions of the molecule with 

external grid probe atoms, our approach makes use of internal probe atoms: the property of 

fragment Fri,j is viewed as the interaction of atoms forming the fragment Fri,j  with the atom j 

(with no chemical identity, however). Other particular fragmental property models 

the reader can find in ref.19   
 

Fragmental Property Matrices 

 The fragmental property matrices are square matrices of the order N (i.e. the number 

of non-hydrogen atoms in the molecule). The non-diagonal entries in such matrices are 

fragmental properties corresponding to any pair of vertices (i,j) by a chosen model.  

In case of Cluj criteria, the fragmentation can supply more than one maximal fragment 

for the pair (i,j). In such a case, the matrix entry is the arithmetic mean of the individual 

values. 
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 Thus, if i,j ∈ V(G), i ≠ j and Pi,j = { k
j,ij,ij,i p,...,p,p 21 } paths joining i and j, then cf. CJ 

or CF definition (eqs 1-3), the fragments k
j,ij,ij,i Fr,...,Fr,Fr 21
 are generated. Let m be the 

number of maximal fragments among all the k fragments, 1≤ m ≤ k, and let σ1, …,σm  be the 

index for the maximal fragments. By applying any of the above models (eqs 21-29) for all the 

m maximal fragments we obtain m values (for example, by eq 29): 

 PD( 1
,
σ
jiFr ), PD( 2

,
σ
jiFr ), …, PD( m

jiFrσ
, ) 

and consequently, the matrix entry associated to the pair (i,j) is the mean value: 

 
m

)Fr(PD
PD

m

t
j,i

j,i

t∑
== 1

σ

         (38) 

The resulting matrices are in general unsymmetric but they can be symmetrized (see eqs 4, 5). 

The symbols for the fragmental property matrices will be detailed below. 
 

Operators for Calculating Fragmental Property Indices 

 Fragmental property indices are calculated at any fragmental property matrices above 

discussed, by applying four types of index operators: P_, P2, E_, E2 according to the 

relations: 

 P_(M)=½ΣΣ[M]i,j                 ;      P2(M)= ½ΣΣ [M]i,j[M]j,i;  

 E_(M)= ½ΣΣ [M]i,j [A]i,j   ;    E2(M) = ½ΣΣ [M]i,j[M]j,i[A]i,j   (39) 

 
where M is any property matrix, symmetric or unsymmetric. 

 

Name of the Fragmental Property Matrices and Indices 

 The name of fragmental property matrices is of the general form: 

 ABcDdEfffffG         (40) 

where: 

 A ∈ {D, R}; D = Dense; R = Rare; 

 B ∈ {T, G}; T = Topological; G = Geometric; 

 c ∈ {f, j, s};  f = CF-type; j = CJ-type; s = Sz-type; 

 Dd ∈ {Di, De};  Di = Distance; De = Detour; 
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 E ∈ Φ (i.e. E∈{M, E, C, P} where M = mass; E = electronegativity; C = cardinality; 

P = other atomic property - implicitly, partial charge; explicitly, a property given by manual 

input); 

 fffff ∈ Ω (i.e. fffff∈{__p__, _1/p_, __d__, _1/d_, _p.d_, _p/d_, _p/d2, p2/d2}  

 G ∈ Ψ (i.e. G∈{S, P, A, G, H} with the known meaning (see above). 

 The name of fragmental property indices is of the general form: 

 ABcDdEfffffGii         (41) 

where: 

 ii ∈ {P_, P2, E_, E2} with the known meaning (eq 39). 

 If an operator, such as f(x) = 1/x (inverse operator) or f(x) = ln(x), is applied the 

indices are labeled as follows: 
 

 lnABcDdEfffffGii := ln(ABcDdEfffffGii);  

 1/ABcDdEfffffGii := 
fGiiABcDdEffff

1       (42) 

 For example, index lnDGfDeM__p__SP_ is the logarithm of index 

DGfDeM__p__SP_ computed on the property matrix DGfDeM__p__S. The model used is 

dense, geometric, on fragment of type CF, with the cutting path being detour. The chosen 

property is the mass, the descriptor for property is even the property (mass) and the sum 

operator counts the vertex descriptors. 

 

Model Degeneration and Computational Features 

 The degeneration in the above models may occur in cases when the values of property 

are not diverse enough, like is case of cardinality (see Fragmental Numbers, this Section). 

Another degeneration is in the case: RTfDiC__p__H = TfDiC_1/p_S.  

 The fragmental analysis was made by the aid of four original 16-bit windows 

computer programs. First program, ClujTheor calculates topological descriptors of Cluj and 

Szeged type and generates the fragments for the molecules. Second, ClujProp calculates the 

fragmental properties. The third one, StatMon makes monovariate regressions and sorts 

indices according to the correlation score. The forth program, StatQ performs multi-linear 

regression (2-variate, 4-variate, etc.) and saves on disk the best couples of indices. The total 

number of indices is given by: 2560 × 3(i.e. x, ln(x), 1/x) × 3(i.e. the criteria: CJ, CF, Sz) × 2 

(i.e. the path criteria: Di, De) = 46080. Note that in most cases, the degeneration induced by 
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property values and operators lead to a total number of distinct indices around 19,000. In 

bivariate regression, the first 214-1=16383 indices recording the best scores in monovariate 

regression are considered. 

 

Correlating Studies 

 

The mathematical models of a certain property are performed by MLR (Multiple 

Linear Regression) and/or CNN (Computational Neural Networks).29-39 In any case, the model 

is built by using a training set of structures that provides a calibration equation. Next, it is 

validated by a cross-validation procedure and also by using an external prediction set. In the 

following, the MLR procedure is presented. 

MLR, for n observations and m independent variables is represented by 

∑+=
m

j
ijiji XbbY 0          (43) 

or, in matrix form as 

bXY =           (44) 

where Y is the n x 1 vector of responses, X is an n x (m + 1) matrix of independent variables 

and b is the (m + 1) x 1 vector of regression coefficients. The regression coefficients can be 

determined by the least-squares solution of (44) 

YXXXb TT 1−= )(          (45) 

With b calculated, eq 44 can be used for estimating the chosen property for other 

chemical structures. 

To avoid the chance correlations, it is recommended that the number of descriptors  

submitted to regression be less than 60 % of the number of observations in the training set.40 

 

Set 1. Substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones. 

 

 We tested the correlating ability of FPIF on a set of 17 molecular structures from the 

class of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones. 

 The molecular structure of the selected chemicals is given in Figures 2.(a, b). It was 

performed by using the MM+ ( for 3D-geometries) and semiempirical AM1 (for partial 

charge calculation) procedures of the HyperChem Program (HyperCube Inc.). 
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Figure 2.a. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones;  molecules 1 
to 10.  
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Figure 2.b. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones; 

molecules 11 to 17. 
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The modeled properties were the sum of one-electron energy calculated at the 

Extended-Huckel level and the inhibitory activity (in %) of a solution of 0.05 mg/ml 

pyrazolin-5-one on Lepidium sativum L. (Cresson). The data are listed in Table 1. 

 

Table 1. The Sum of One-Electron Energy Calculated at Single Point Semi-Empirical 

Extended-Huckel and the Inhibitory Activity on Lepidium sativum L. (Cresson) for 17 

Substituted 3-(Pthalimidoalkyl)-Pyrazolin-5-Ones* 

 
Molecule 

no. 
Energy 

(kcal/mol) 
Inhibition  

(%) 
1 50978.19 28.4 
8 64751.09 65.2 
7 64752.65 49.4 
6 62330.33 68.3 
5 38604.68 14.3 
4 53416.95 27.7 
3 53441.43 30.4 
2 51000.36 28 
17 41057.46 15.1 
16 67104.64 50.6 
15 64701.39 71.7 
14 43473.37 18.2 
13 41020.54 12.2 
12 55832.12 32.6 
11 55729.99 28.9 
10 53424.19 29.3 
9 50012.42 46.9 

 

* Values of inhibition are taken from ref. 41  
 

 

Monovariate Regression for Energy 

For the first six best indices in monovariate correlation, the equation is: 

 Predicted energy = b0 + b1⋅lnIndex       (46) 

The indices are listed in Table 2 along with the Pearson correlation index R and the regression 

coefficients. 
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Table 2. The Bests Six Correlations of Energy in Monovariate and Divariate Regression 

Index 
No. 

Index Name R b0 b1 

1 lnDGjDeE_p/d2PE_ 0.99973 5370 3760 
2 DTjDeEp2/d2SE_ 0.99964 8802.3 138 
3 lnDGjDeE_p/d2PE2 0.99964 1289.5 3671.1 
4 DTjDeMp2/d2SE_ 0.99939 9188.7 922.34 
5 lnDGsDiM_p/d2PE_ 0.99938 -59041 28397 
6 lnRTjDeE_p*d_PP_ 0.99927 3044 1938.6 
     
1 
2 

lnDGjDeE_p/d2PE_ 
DTjDeEp2/d2SE_ 

0.999688 8771.8 -21.648 
138.77 

1 
10175 

lnDGjDeE_p/d2PE_ 
lnDTsDeE_p/d_PP2 

0.999871 58810 
 

3678 
-6593.1 

4 
4315 

DTjDeMp2/d2SE_ 
DTfDiE_p/d_AP2 

0.999902 13056 1108.8 
-95.598 

34 
5947 

RTsDiM_p/d2GP2 
DTjDeEp2/d2AP_ 

0.999969 -1193 1674.3 
-41.168 

492 
1698 

RTjDeM_p/d2SP_ 
1/RTsDeM_p/d2AE2 

0.999974 58267 
 

46.095 
-686800 

492 
1737 

RTjDeM_p/d2SP_ 
1/RTsDeM_p/d2AP2 

0.999981 56222 47.864 
-711240 

 

The best single variable QSPR (boldface in Table 2) was 

 Predicted energy = 5370 − 3760 * lnDGjDeE_p/d2PE_    (47) 

    R = 0.99973; n = 17 

 

This correlation could be satisfactory but usually a molecular property shows more than one 

dimension dependency. For this reason, we performed the bivariate regression. 

 

Bivariate Regression for Energy 

 The first 16383 indices, labeled in decreasing order of their score in monovariate 

regression, are submitted for bivariate correlation. A procedure for finding subsets of optimal 

even number descriptors was developed. It is a simple, iterative technique that eludes the 

investigation of all possible descriptor combinations and reduces the time for drawing the best 

property model. More details will be presented in a future paper. 

 Here, the bivariate correlation for six pairs of indices is exemplified. The pairs are: (1, 

2); (1, 10175); (4, 4315); (34, 5947); (492, 1698) and (492, 1737). The first two pairs are 

taken to show that the first scored index in monovariate regression does not provide the best 
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bivariate correlation. Selection of the pairs of indices for bivariate correlation must be done by 

traversing  the whole pool (1...16383). For additional descriptors, our procedure for optimum 

descriptor selection avoid the mining of all possible index combinations. 

 The best bivariate score was provided by the pair (492, 1737) (Figure 3): 

 Predicted energy = 56221.885 + 47.864*RTjDeM_p/d2SP_    (48) 

    - 711240.703*1/RTsDeM_p/d2AP2 

   R = 0.99998;  s = 57.40;  n = 17 
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Figure 3. The plot: energy vs predicted energy cf eq 48  

An insight in Table 2 reveals that the best models (i.e. those showing R > 0.9999) 

show a dependency of this energy by the molecular topology (topological models) and the 

nature of atoms (mass and electronegativity). 

 

Monovariate Regression for Inhibition 

For the first six best indices in monovariate regression, the equation of the model is: 

 Predicted inhibition = b0 + b1⋅Index      (49) 

for which the indices and statistics are given in Table 3. 
 

R = 0.99998 
s = 57.40 
n = 17 
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Table 3. The Best Six Correlations of Inhibition in Monovariate and Divariate Regression 

Index 
No. 

Index Name R b0 b1 

1 lnDGsDeC_1/p_SE_ 0.95389 -336.76 96.378 
2 1/DGsDeC_1/p_SE_ -0.95231 137.01 -4754.8 
3 lnDTjDeE_p*d_HE_ 0.95174 135.80 -493.02 
4 1/DTjDeE_p*d_HE_ -0.95169 175.92 -6826.3 
5 1/DTjDeEp2/d2AE_ -0.95144 186.07 -19546 
6 DGsDeC_1/p_SE_ 0.95126 -56.53 1.9019 
1 
2 

lnDGsDeC_1/p_SE_ 
1/DGsDeC_1/p_SE_ 

0.955154 -129.47 54.37 
-2121.1 

1 
1369 

lnDGsDeC_1/p_SE_ 
1/RGsDeMp2/d2SE2 

0.96935 -84.14 47.481 
-3743200 

2 
13227 

1/DGsDeC_1/p_SE_ 
lnRGsDeE_p/d_AE2 

0.983967 -452.74 -4279.8 
118.74 

18 
16842 

DTjDeEp2/d2AE_ 
RGjDeP_p/d_GP_ 

0.988316 121.21 1.076 
-1.5194 

37 
11362 

DTjDeE_p/d_AE_ 
lnDGjDeP_p/d_PE2 

0.990564 -73.183 2.1644 
-4.1769 

4304 
7649 

DTsDiM_p*d_HP_ 
DGjDeE_p/d2SE2 

0.99268 -26.846 1.5619 
-1.7043 

 

 

 

The best monovariate QSAR was 

Predicted inhibition =  -336.760 + 96.378* lnDGsDeC_1/p_SE_    (50) 

   R = 0.9539; n = 17 

which is, of course, not satisfactory, despite in ref.41 a value of R = 0.92 was reported. Thus, 

we performed the bivariate regression. 

 

Bivariate Regression for Inhibition 

 Six pairs of indices are considered here for bivariate correlation:  (1, 2); (1, 1369); (2, 

13227); (18, 16842); (37, 11362) and (4304, 7649). 

 As in the case of energy, the best scored index in monovariate correlation is not 

present in the pair of best bivariate correlation.  

The best bivariate score was done by the pair (4304, 7649): 

 

Predicted inhibition = -26.846 + 1.562* DTsDiM_p*d_HP_-1.704 * DGjDeE_p/d2SE2 

R = 0.9927;  s = 2.374; n = 17.    (51) 
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Figure 4. illustrates the plot of inhibition vs predicted  inhibition cf eq 51.  
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Figure 4. The plot: inhibition vs predicted inhibition cf eq 51  

 

 The constant high correlation (see Table 3) between the best indices and the 

mitodepressive activity on Lepidium Savitium L. (Cresson) demonstrate ability of this family 

of indices to estimate the biological activity of the considered set of chemical structures. The 

models with R > 0.983 suggest that the mitodepressive activity on Lepidium Savitium L. 

(Cresson)  is dependent both on the geometric and topological features of molecules, the 

nature of atoms (mass and electronegativity) and the electrostatic field of atoms induced by 

their partial charges. 

 

 
 

Set 2. Aromatase Inhibitors. 

 
 

A set of substituted dichlorodiphenyls (4, 4’-dichlorodiphenyl-methanes) inhibitors of 

aromatase42 were considered. Enzymatic aromatization of androgens is involved in the 

biosynthesis of estrogens, and consequently in the estrogen-dependent diseases. 

 

R  = 0.99268 
s = 2.374 
n = 17 
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Table 4. Dichlorodiphenyl Methanes Aromatase Inhibitors. 

 

C ClR

Cl

H

 
No. R -log EC50 obs 
1 

N

N

 

7.43 

2 
N

 

8.03 

3 N

 

8.06 

4 

N
H  

5.70 

5 
NHN

 

5.71 

6 
N

N

 

5.30 

7 

N
N

N

 

5.30 

8 N

N
N

 

6.80 

9 
N N

N

 

5.30 

10 

N
N

N

 

7.26 

  

 

For modeling the inhibition, the authors42 used two dipole moment related descriptors. 

We modeled the inhibition in monovariate regression but no satisfactory correlation (R2 

around 0.828) was found. In divariate regression, the correlation improved (Figure 5). 
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Predicted inhibition = 6.177 + 0.513*lnRTjDiP__p__HP2 - 0.071*1/DGjDeP_1/p_SP2 

    R2 = 0.9716;  s = 0.205;  n = 10     (52) 
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Figure 5. The plot of predicted vs observed inhibition of aromatase. 

 

 The best reported42 correlation for this subset was: R2  = 0,89; s = 0.44. In our model, 

both the topology and geometry (see the indices in eq 52) are important in modeling the 

aromatase inhibition by dichlorodiphenyl methanes. 

 

 Set 3. N-containing compounds 

 

 A set of 90 N-containing compounds (Table 5) of industrial importance was taken 

from the paper.43 The tested property was the normal boiling point, B.P. The authors modeled 

this property by using  four categories of molecular descriptors: topological, geometric, 

electronic and charged-partial surface area descriptors (CPSA).44,45 The nitrogen-containig 

compounds were problematic in modeling a diverse set of organic chemicals, so that the 

authors excluded such compounds from their initial model.  

 The best found MLR model involved ten descriptors (1. dipole moment; 2. partial 

negative surface area; 3. relative negative charge; 4. relative negative charged surface area; 5. 

number of aromatic bonds; 6. path 2 molecular connectivity index; 7. cluster 3 valence 

connectivity index; 8. sum of all path weights from heteroatoms; 9. surface area of donatable 

hydrogens and 10. charge of donatable hydrogens) and showed the following statistics: n = 90 

R2 = 0.9716 
s = 0.205;   
n = 10 
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Table 5. Nitrogen-Containing Compounds and Their Boiling Points. 

No. Compound BP No. Compound BP 
1.  2-ethylpyridine 422.2 46.  n-tetradecylamine 564.5 
2.  2-ethylpiperidine 416.2 47.  acridine 619.2 
3.  1-ethylpiperidine 404.2 48.  tri-n-butylamine 487.2 
4.  2,2-dimethyl-1,3-diaminomethane 426.2 49.  n-dodecylamine 532.4 
5.  N,N-dimethyl-1,3-diaminomethane 418.2 50.  diamylamine 476.1 
6.  3,3-dimethylpiperidine 410.2 51.  tripropylamine 429.7 
7.  p-fluorobenzylamine 456.2 52.  n-nonylamine 475.4 
8.  cianogene 252 53.  quinoline 510.8 
9.  m-bromoaniline 524.2 54.  acetonitrile 354.8 
10.  o-bromoaniline 502.2 55.  isoquinoline 516.4 
11.  N-ethylbutylamine 381.2 56.  n-octylamine 452.8 
12.  triethylamine 362 57.  indole 526.1 
13.  N,N-diethylamină 337.2 58.  n-heptylamine 430.1 
14.  o-nitrotoluene 498.2 59.  p-nitrotoluene 511.7 
15.  nitrocyclopentane 453.2 60.  benzonitrile 464.1 
16.  N-alylaniline 492.2 61.  3-nitrobenzotrifluoride 475.9 
17.  ethylamine 289.7 62.  di-n-propilamine 382 
18.  p-nitrophenole 552.2 63.  nitrohexane 436.8 
19.  cyclopentylamine 380.2 64.  phenilhidrazine 516.7 
20.  2-methylbutylamine 368.7 65.  methylamine 266.8 
21.  N-methylbutylamine 364.2 66.  3-methylpyridine 417.3 
22.  benzylamine 457.7 67.  aniline 457.2 
23.  p-methoxyaniline 514.7 68.  p-chloroaniline 503.7 
24.  m-methoxyaniline 524.2 69.  m-chloroaniline 501.7 
25.  o-methoxyaniline 498.2 70.  n-pentylamine 377.6 
26.  t-pentylamine 350.2 71.  isobutylamine 340.9 
27.  dimethylamine 280 72.  diethylamine 328.6 
28.  1-(2-aminoethyl)-piperidine 459.2 73.  tert-butylamine 317.5 
29.  1-(2-aminoethyl)-piperidine 493.2 74.  n-butylamine 350.6 
30.  9-methyl carbazole 616.8 75.  pirolidine 359.7 
31.  carbazole 627.8 76.  nitromethane 374.4 
32.  4-methylaniline 473.6 77.  isobutyronitrile 376.8 
33.  3-methylaniline 476.5 78.  n-butyronitrile 390.8 
34.  2-methylaniline 473.5 79.  cis-crotonitrile 380.6 
35.  2-propylamine 304.9 80.  trimethylamine 276 
36.  1-naphtylamine 573.8 81.  2-nitropropane 393.4 
37.  nitroethane 387 82.  1-nitropropane 404.3 
38.  piperidine 376.4 83.  propionitrile 370.5 
39.  4-methylpyridine 418.5 84.  acrylonitrile 350.5 
40.  2-methylpyridine 402.5 85.  N-methylhexylamine 414.2 
41.  pyridine 388.4 86.  n-heptylamine 428.2 
42.  pyrole 402.9 87.  N-tert-butylisopropylamine 371.2 
43.  2-butylamine 335.9 88.  2-aminoheptane 416.2 
44.  triamylamine 516.2 89.  malononitrile 491.5 
45.  ethylenimine 329 90.  hydrogen cyanide 298.8 
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compounds; R = 0.990; s = 10.7 K. The largest pairwise R value of descriptors was 0.83. The 

modeling was performed by the ADAPT system.46 

 Our aim was to verify the quality of our property descriptors exactly in the same 

conditions as given in ref.43 Thus, we extracted from the initial set of 104 N-containing 

compounds the same subset of 90 structures. 

Molecular geometries and partial charges were calculated by the semiempirical AM1 method. 

The set of 19350 descriptors were reduced to 16383 after the monovariate regression.19 Our 

procedure for finding the optimal subset of descriptors led to a subset of 72 descriptors. The 

best scores in ten variate regression for the set of 90 compounds of Table 5 are listed in Table 

6.  

 Table 6. The Best Multivariate Regressions for the 90 Structures of Table 5. 

No X1 X2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 R 
1 7 4959         0.944600 
2 4 4797         0.945140 
3 5 4959         0.948670 
            
4 5 4959 14250 14607       0.962734 
5 5 4959 10990 9671       0.962809 
6 5 4959 10990 7206       0.967113 
            
7 5 4959 10990 9671 16 3320     0.974787 
8 5 4959 10990 9671 3320 6422     0.976078 
9 5 4959 10990 9671 3528 6422     0.976574 
            

10 5 4959 10990 9671 3528 6422 7256 16148   0.979844 
11 5 4959 10990 9671 3528 6422 16148 6895   0.979862 
12 5 4959 10990 9671 3528 6422 6895 15789   0.980012 
            

13 5 4959 10990 9671 3528 6422 6895 15789 16158 16225 0.983581 
14 5 4959 10990 9671 3528 6422 16158 16225 15060 15789 0.984335 
12 6 6895 4 16275 963 841 163 13920 1 4727 0.985431 

 

The best model was: 

BPcalc =  225.441 - 59.627*lnDTsDiP_p/d2SE2 + 316.627*RTsDiPp2/d2AE_ +   (53) 
 1.124*DGfDePp2/d2PP_  - 1729.562*1/DTsDiE_p*d_HE2  -  
 0.010*1/DTsDePp2/d2SP2 - 49.623*1/DGsDeP_p*d_HE_ +  
 8.846*lnDGjDiPp2/d2GP_ - 4.698*1/RGjDeP_p*d_GP_ -  
 12.188*lnDGjDeP_p/d_HP_  + 33.597*DGjDeE__p__SE2 
 
 R  = 0.98543;  s = 13.149;  n = 90 
The plot corresponding to eq (53) is given in Figure 6. 
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Figure 6. The plot of calculated vs observed normal boiling points 

(the set of Table 5) 

 

 Our result is slightly lower (s = 13.149 K) than that reported in ref.43 (s = 10.7 K). It is 

possible to further improve the model by mining the whole descriptor pool not only within the 

limits of a heuristic procedure. Another possibility is to use different training subset selection 

and outlier elimination. Such procedures will be reported in a future paper. 

 

Set 4. Nitrophenols. 

 

 A set of 25 nitrophenols47 showing herbicidal activity (Table 7) was considered for 

correlation with the Cluj Property indices. Nitrophenols are known to inhibit the electronic 

flux of photosynthesis. 

R  = 0.98543 
s = 13.149 
n = 90 
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Table 7. Nitrophenols and Their Herbicidal Activity 

 

No R1 R2 R3 pI50 
1 H methyl methyl 3.3 
2 H methyl isopropyl 4.1 
3 H H t-butyl 5.7 
4 H H phenyl 4.35 
5 H H cyclohexyl 4.85 
6 Cl methyl methyl 4.89 
7 Cl methyl isopropyl 6.07 
8 Cl H t-butyl 6.88 
9 Cl H phenyl 6.45 
10 Cl H cyclohexyl 6.52 
11 Br methyl methyl 5.25 
12 Br methyl isopropyl 6.70 
13 Br H t-butyl 6.15 
14 Br H phenyl 6.52 
15 Br H cyclohexyl 6.75 
16 I methyl methyl 6.24 
17 I methyl isopropyl 6.70 
18 I H t-butyl 7.03 
19 I H phenyl 6.86 
20 I H cyclohexyl 6.65 
21 NO2 H H 3.00 
22 NO2 H methyl 3.70 
23 NO2 H s-butyl 5.10 
24 NO2 H t-butyl 5.79 
25 NO2 H cyclohexyl 6.05 

 

 

Table 8 list the best scores of correlation in decreasing order. From this table it can be 

seen that the monovariate and divariate regression are not satisfactory. Additional variables 

are needed for good statistics (entries 6-13).  
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Table 8. Mono- and Multivariate Regression for Nitrophenols 

 

No X1 X2 X3 X4 X5 X6 R 
1 1      0.94991 
        
2 6 155     0.97089 
3 7 174     0.96974 
4 11 10620     0.96654 
5 5 260     0.96617 
        
6 13028 15806 91 15636   0.99078 
7 13028 15806 12 15398   0.99013 
8 12 15806 13891 15749   0.99067 
9 7 13028 382 14214   0.98932 
        

10 13028 15806 12 15398 15228 15865 0.99850 
11 12 15806 13891 15749 15648 16378 0.99674 
12 7 13028 382 14214 13186 16282 0.99650 
13 13028 15806 91 15636 14064 14943 0.99562 

 

 

The best model is given in eq 54 (see also entry 10, Table 8): 

 

Predicted activity = 8.062 - 0.003*RGsDeM_p/d2PE2 +  0.395*1/DTsDiP_p*d_HE_ 

 - 0.000008*1/RTsDiPp2/d2HE2 - 229.564*1/DGjDeMp2/d2PE2  

 + 0.003*RGjDiPp2/d2HP_ + 0.004*DTsDeP_p*d_HP2   (54) 

 R = 0.9985; s = 0.067;  n = 25 

 

 

The plot of the predicted vs observed herbicidal activity, cf. eq 54, is shown in Figure 

7. 
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Figure 7. The plot of predicted vs. observed herbicidal activity 

 

The descriptors involved in eq 54 show a rather low inter-correlation (Table 9). The 

average absolute value of the pairwise correlation coefficients was 0.2200. 

 

Table 9. Intercorrellation of the indices in entry 10, Table 8. 

 

 X2 X3 X4 X5 X6 
X1 0.216489 0.697018 0.067367 0.121666 0.171049 
X2  0.137108 0.015049 0.060902 0.264608 
X3   0.201832 0.039716 0.269802 
X4    0.682383 0.22193 
X5     0.133726 

 

 

Discussion 

 The fragmental property indices  take  into account  the chemical  nature of atoms  

(mass and electronegativity), various kinds of interactions between the fragments of 

molecules and the 3D geometry of molecular structures. 

 There exist an analogy between CoMFA and FPIF: both of them calculate the 

interaction of a chemical structure (or substructure) with a probe atom in the 3D space. The 

property of fragment Fri,j is viewed as the interaction of atoms forming the fragment Fri,j with 

R = 0.9985  
s = 0.067  
n = 25 
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the atom j . The major difference is that CoMFA uses external probe atoms (with defined 

chemical identity) whereas FPIF considers internal probe atoms with no chemical identity. 

Only the fragments (i.e. substructures) are chemically well defined. 

 Bivariate correlation with indices belonging to FPIF offer good quality models for 

quite diverse molecular properties such as the inhibition of mitodepressive activity on 

Lepidium Savitium L. (R > 0.99 - see set 1) and the aromatase inhibition (set 2) as well. The 

same is true for the sum of one-electron energy calculated at the Extended-Huckel level (R > 

0.9999).   

 Multivariate regression provided good models for the boiling points of a very diverse 

set of N-containing organic molecules (set 3) or for the herbicidal activity (set 4).  

 Note that there is no causal relationship between descriptors and a chosen property, 

despite each descriptor encodes some aspects of  intra- and/or intermolecular interactions. In 

case of a highly noncongeneric database, (the case of the set 3) more than one model, with 

equivalent accuracy are expected. Our results provided different vectorial descriptions that 

are, in some extent, isomorphic. 

The occurrence of a certain descriptor type can be however, indicative, for a possible 

causal relation between the structure and the investigated property. In the set 4, the best model 

(eq 54) is described by the mass (M) for X1 and partial charge (P) for the remainder 

descriptors. It is just the expected case: the herbicidal activity of nitrophenols (a congeneric 

set) is controlled by the acidity of the phenol group, which increases with decreased negative 

partial charge on the oxygen atom.  

 It appears that, in large ensembles of molecules, the correlation is not strongly 

dependent of the type of chemical description, which is not the case in the more compact 

sampling of congeneric sets. At the detailed scale, the observable properties strictly depend on 

the particular data set and require more specified description. It justifies the conclusion48 that 

there exists different mapping behavior of the chemical space at different scales and which 

one is more suitable in a given problem remains at the latitude of the researcher. 

 The above presented results demonstrate the good correlating ability of FPIF. It 

represents a promise for further QSPR/QSAR studies. 
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