An exact expression for the Wiener index of a polyhex nanotorus

Yousefi, S. a, Ashrafi, A.R. b

a Center for Space Studies, Malek-Ashtar University of Technology, Tehran, Iran
b Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran

Abstract

The Wiener index of a graph G is defined as $W(G) = \frac{1}{2} \sum_{x,y \in V(G)} d(x,y)$, where $V(G)$ is the set of all vertices of G and for $x,y \in V(G)$, $d(x,y)$ denotes the length of a minimal path between x and y. In this paper an algorithm for computing the distance matrix of a polyhex nanotorus $T = T[p,q]$ is given. Using this matrix, we obtain an exact expression for the Wiener index of T. We prove that: (Equation presented).

Matched Terms:

Chemicals and CAS Registry Numbers: calcium phosphate; berilium

See the Extended format page for all index keywords in this document.

References (17)

1. Wiener, H.
 Structural determination of the paraffin boiling points
 View at Publisher

2. Hosoya, H.
 Topological index, a newly proposed quantity characterizing
 the topological nature of structure isomers of saturated
 hydrocarbons
 View at Publisher

3. Diudea, M.V., Gutman, I., Jantschi, L.
 Huntington, NY

Cited By since 1996

This article has been cited 1 time in Scopus:

Deng, H.
Wiener index of tori $T[p,q][C_4, C_8]$ covered by C_4 and C_8
(2006) Match
Abstract + Refs

Find related documents

In Scopus based on
references authors

On the Web based on
title authors

The energetic stability of tori and single-wall tubes
doi: 10.1081/FST-100107148

17. Cameron, P.J.
Cambridge University Press, Cambridge