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Abstract

This paper introduces a general framework for defining the entropy of a graph. Our definition is based on a local
information graph and on information functionals derived from the topological structure of a given graph. More pre-
cisely, an information functional quantifies structural information of a graph based on a derived probability distribu-
tion. Such a probability distribution leads directly to an entropy of a graph. Then, the structural information content
of a graph will be is interpreted and defined as the derived graph entropy. Another major contribution of this paper is
the investigation of relationships between graph entropies. In addition to this, we provide numerical results demon-
strating not only the feasibility of our method, which has polynomial time complexity, but also its usefulness with
regard to practical applications aiming to an understanding of information processing in complex networks.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Entropy-based methods are powerful tools to investigate various problems in, e.g., mathematical chemistry,
cybernetics, computational physics and pattern recognition [3,18,16,23,28,35]. Particularly, the application of
information-theoretical methods to analyze graph-based systems is currently of considerable interest
[6,7,9,14,22]. For example, in chemical graph theory [12,32] there are many approaches to characterize molec-
ular structures based on so called information indices [3]. The determination of the structural information con-
tent [3,24–27,29,33] of a graph is also a classical problem in the areas mentioned above. Thereby, classical
methods to compute the structural information content of a graph are mostly based on finding a certain par-
titioning of the vertex set to obtain a probability distribution [24–27,29,33]. Based on such a probability dis-
tribution derived from a vertex partitioning, the entropy of a graph can be defined. In this context, the
structural information content is defined as the entropy of the underlying graph topology. Another classical
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definition of graph entropy that is rooted in information theory was orginally introduced in [21]. In contrast to
these classical approaches, in this paper we first generalize the approach of [9] to define an entropy of a net-
work by using the novel concept of the local information graph. The main idea of this graph entropy approach
recently presented in [9] was to avoid the problem of determining certain vertex partitions for defining the
entropy of a graph. Then, in order to define the probability value for each vertex and, hence, the entropy
of a graph, local vertex functionals have been used [9]. In this paper, we will generalize this concept by intro-
ducing some novel definitions to use general structural properties or graph measures for defining information
functionals for networks. Generally, information functionals for graphs can be used to quantify structural
information based on a given probability distribution. However, starting from different information function-
als, the investigation of relationships between the associated graph entropies is important. As one main result,
we state inequalities which express relationships between the vertex probability values and the resulting graph
entropies. We want to emphasize that such results are very useful to compare the entropies of certain graph
classes numerically. Moreover, this paper wants to contribute to the problem of analyzing and understanding
information processing in complex networks [13,15], e.g., signaling, metabolic or protein networks, by using
information-theoretical methods. Another main contribution of this paper are numerical results. First, we
visualize all key steps of our procedure by appropriate numerical examples and, second, we demonstrate
the feasibility and usefulness of the introduced method with regard to some given graphs. It is important
to note, that only methods that are computationally efficient do have the potential for practical applications.
This was a major problem of some classical approaches [26,27,29,33]. However, as we demonstrate in Section
2.3, our approach has polynomial time complexity.

This paper is organized as follows: in Section 2, we introduce important definitions to generalize the graph
entropy concept of [9]. Further, we define novel information functionals and briefly analyze the computational
complexity to compute the resulting graph entropies. In Section 3, we state assertions for deriving relation-
ships between the resulting graph entropies. In Section 4, we present numerical results to study the influence
of different information functionals on the resulting entropies. The paper finishes in Section 5 with a summary
and conclusion.
2. Quantifying structural information in networks

The goal of this section is to generalize the graph entropy method recently presented in [9] by defining the
concept of the local information graph of a certain vertex vi 2 V . Then, by using this definition, several struc-
tural properties or graph measures can be used to define the entropy of a graph via an information functional.
The steps to generalize the method of [9] can be expressed as follows:

� Definition of certain local subgraphs based on determining vertex spheres. The vertex spheres are sets of
vertices whose elements have a certain shortest distance to a chosen vertex in a given graph.
� Definition of a local information radius by using a general information functional f. Then, this definition is

based on the obtained local subgraphs. f quantifies structural information of the underlying graph regard-
ing a vertex vi.

To introduce the novel definitions, we first repeat some basic graph-theoretical preliminaries [5,17,20,31].
We remark that in this paper we throughout deal with undirected and connected graphs without loops and
multiple edges.

Definition 2.1. G ¼ ðV ;EÞ; jV j <1 denotes a finite undirected graph, where E � V
2

� �
. G is called connected

if for arbitrary vertices vi and vj there exists an undirected path from vi to vj. GUC denotes the set of finite,
undirected and connected graphs.

Definition 2.2. Let G ¼ ðV ;EÞ 2 GUC. dðu; vÞ denotes the shortest distance between u 2 V and v 2 V where d is
a metric. The quantity rðvÞ ¼ maxu2V dðu; vÞ is called eccentricity of v. qðGÞ ¼ maxv2V rðvÞ and
rðGÞ ¼ minv2V rðvÞ is called the diameter and the radius of G, respectively.
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The following definitions form the key concept for using arbitrary information functionals to measure the
entropy of graphs. By applying these definitions, we will see that this concept can be understood as a first
attempt to investigate the local information spread [10] in complex networks.

Definition 2.3. Let G ¼ ðV ;EÞ 2 GUC . The set
Sjðvi;GÞ :¼ fv 2 V jdðvi; vÞ ¼ j; j P 1g; ð1Þ

is called the j-sphere of vi regarding G. dðvi; vÞ denotes the shortest distance between the vertices vi and v.

Definition 2.4. Let G ¼ ðV ;EÞ 2 GUC. For a vertex vi 2 V we determine the set Sjðvi;GÞ ¼ fvuj ; vvj ; . . . ; vxjg and
define associated paths:
P j
1ðviÞ ¼ ðvi; vu1

; vu2
; . . . ; vujÞ;

P j
2ðviÞ ¼ ðvi; vw1

; vw2
; . . . ; vwjÞ;

..

.

P j
kj
ðviÞ ¼ ðvi; vx1

; vx2
; . . . ; vxjÞ;
and their edge sets
E1 ¼ ffvi; vu1
g; fvu2

; vu3
g; . . . ; fvuj�1

; vujgg;
E2 ¼ ffvi; vw1

g; fvw2
; vw3
g; . . . ; fvwj�1

; vwjgg;

..

.

Ekj ¼ ffvi; vx1
g; fvx2

; vx3
g; . . . ; fvxj�1

; vxjgg:
Now, we define the graph LGðvi; jÞ ¼ ðV L;ELÞ � G, where
V L :¼ fvi; vu1
; vu2

; . . . ; vujg [ fvi; vw1
; vw2

; . . . ; vwjg [ � � � [ fvi; vx1
; vx2

; . . . ; vxjg; ð2Þ
and
EL :¼ E1 [ E2 [ � � � [ Ekj : ð3Þ
Definition 2.5. Let G ¼ ðV ;EÞ 2 GUC and let S initially be an abstract set. Then, we call f : S ! Rþ the infor-
mation functional of G. We always assume that f is monotonous.

We want to notice that the abstract set S mentioned in Definition 2.5 defines a certain set of associated
objects of a graph G, e.g., vertex sets, sets of paths, or certain subgraphs. This set S is used to define the func-
tional f that captures structural information of G. As an example, we show in Fig. 1 the process of determining
j-spheres for a simple undirected and connected graph G and the derived local information graphs (with
respect to a special f, see Definition 2.10).

Definition 2.6. We call LGðvi; jÞ ¼ ðV L;ELÞ the local information graph regarding vi 2 V with respect to f.
Further,
j ¼ jðviÞ; ð4Þ

is called the local information radius regarding vi.

As we have already mentioned, the information functional f captures structural information of the under-
lying graph G and has to be defined concretely. This implies that for defining f arbitrary graph-theoretical
properties or quantities can be used. As an important remark, we want to emphasize that the local information
graph regarding vi 2 V is not always uniquely defined. This can be understood by the fact that there often
exists more than one path from vi to a certain vertex in the corresponding j-sphere. In case we use different
information functionals to measure the entropy of a graph, we obviously obtain different probability distribu-
tions. Hence, the resulting graph entropies are also different. In Section 3, we present some theoretical results
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Fig. 1. The left-hand figure shows the determination of j-spheres for a graph G 2 GUC where it holds jS1ðvi;GÞj ¼ 6 and jS2ðvi;GÞj ¼ 4. The
right-hand figure shows the corresponding local information graphs regarding vi 2 V for j ¼ 1; 2 with respect to a special information
functional f. The local information graphs are depicted by red-colored edges. In this example, f is based on counting certain path lengths
(see Definition 2.10). Further, in the right-hand figure, the local information radii for j ¼ 1; 2 are depicted. (For interpretation of the
references in color in this figure legend, the reader is referred to the web version of this article.)
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to investigate relationships between the resulting entropies if different information functionals are used. Start-
ing from the novel definitions, we are now ready to define the entropy of a graph by using an arbitrary infor-
mation functional.

Definition 2.7. Let G ¼ ðV ;EÞ 2 GUC with arbitrary vertex labels. For a vertex vi 2 V , we define:
pðviÞ :¼ f ðviÞPjV j
j¼1f ðvjÞ

: ð5Þ
f represents an arbitrary information functional. Because it holds the equation:
pðv1Þ þ pðv2Þ þ � � � þ pðvjV jÞ ¼ 1;
we interpret the quantities pðviÞ as vertex probabilities.

Now, we immediately obtain a definition of a graph entropy of G where this entropy is here interpreted as
its mean structural information content.

Definition 2.8. Let G ¼ ðV ;EÞ 2 GUC and let f be an arbitrary information functional. We define the entropy
of G by
If ðGÞ :¼ �
XjV j
i¼1

f ðviÞPjV j
j¼1f ðvjÞ

log
f ðviÞPjV j
j¼1f ðvjÞ

 !
: ð6Þ
2.1. Information functionals: metrical graph properties

In the following, we define two information functionals which are based on metrical properties of graphs.
Now, we see that such information functionals can be easily obtained by using the definition of the j-spheres.

Definition 2.9. Let G ¼ ðV ;EÞ 2 GUC. For a vertex vi 2 V , we define the information functional:
f V ðviÞ :¼ ac1jS1ðvi ;GÞjþc2jS2ðvi ;GÞjþ���þcqjSqðvi;GÞj; ck > 0; 1 6 k 6 q; a > 0; ð7Þ

where the ck are arbitrary real positive coefficients. According to Definition 2.3, Sjðvi;GÞ denotes the j-sphere
of vi regarding G and jSjðvi;GÞj its cardinality, respectively.
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The next definition presents a novel information functional f P where this functional is based on path
lengths of the local information graph LGðvi; jÞ (for each vertex vi and j ¼ 1; 2; . . . ; q).

Definition 2.10. Let G ¼ ðV ;EÞ 2 GUC. For each vertex vi 2 V and for j ¼ 1; 2; . . . ; q, we determine the local
information graph LGðvi; jÞ where LGðvi; jÞ is induced by the paths P j

1ðviÞ; P j
2ðviÞ; . . . ; P j

kj
ðviÞ. The quantity

lðP j
lðviÞÞ 2 N; l 2 f1; 2; . . . ; kjg denotes the length of P j

lðviÞ and
lðP ðLGðvi; jÞÞÞ :¼
Xkj

l¼1

lðP j
lðviÞÞ;
expresses the sum of the path lengths associated to each LGðvi; jÞ. Now, we define the information functional
f P ðviÞ as
f P ðviÞ :¼ ab1lðPðLGðvi;1ÞÞÞþb2lðP ðLGðvi ;2ÞÞÞþ���þbqlðP ðLGðvi;qÞÞÞ; bk > 0; 1 6 k 6 q; a > 0: ð8Þ

bk are arbitrary real positive coefficients.

Exemplarily, by applying Definitions 2.9 and 2.10, and Eq. (6), we obviously obtain the special entropies
If V ðGÞ :¼ �
XjV j
i¼1

f V ðviÞPjV j
j¼1f V ðvjÞ

log
f V ðviÞPjV j
j¼1f V ðvjÞ

 !
; ð9Þ
and
If P ðGÞ :¼ �
XjV j
i¼1

f P ðviÞPjV j
j¼1f P ðvjÞ

log
f P ðviÞPjV j
j¼1f P ðvjÞ

 !
: ð10Þ
2.2. Information functionals: local property measures

In Section 2.1, we presented information functionals which are based on metrical graph properties, i.e., car-
dinalities of vertex spheres and path lengths. We want to mention that Definition 2.10 uses the just introduced
concept of a local information graph regarding a vertex vi 2 V . We now see that this concept gives us the pos-
sibility to apply certain graph measures to the obtained local information graphs for defining novel informa-
tion functionals and, hence, novel graph entropy measures. In the following, we define an information
functional by using so called local property measures. By a local property measure, we understand a graph
measure that characterizes graph elements (e.g., vertices of a graph) regarding a local structural property,
e.g., the centrality of a vertex [1,2,4,19,30,34]. For example, if we consider the centrality concept based on
shortest paths in a graph, then such a vertex centrality measure bðviÞ; vi 2 V indicates that vi can reach other
vertices on relatively short paths [4]. Starting from a vertex vi 2 V , this finally means that an information func-
tional based on a certain local property measure quantifies structural information of a graph concerning the
chosen property, e.g., closeness or degree centrality [4,30,34]. One prominent example for such a measure that
is well-known in the theory of social networks is given by [4,34]
bðvÞ ¼ 1PjV j
i¼1dðv; viÞ

: ð11Þ
To apply this measure exemplarily, we consider Fig. 2 and see the local information graphs LGðvi; 1Þ and
LGðvi; 2Þ of G depicted in Fig. 1. Then, the computation of the vertex centrality measure b regarding vi leads
to
bLGðvi ;1ÞðviÞ ¼
1

1þ 1þ 1þ 1þ 1þ 1
¼ 1

6
;

and
bLGðvi ;2ÞðviÞ ¼
1

3þ 3þ 3þ 3þ 2þ 3þ 2
¼ 1

11
:



Fig. 2. The local information graphs LGðvi; 1Þ and LGðvi; 2Þ of G shown in Fig. 1.
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In order to avoid confusion with the above notation, we remark that bLGðvi ;jÞðviÞ expresses that we apply b to vi

regarding LGðvi; jÞ. Now, we are ready to define a novel information functional f C that is based on a vertex
centrality measure.

Definition 2.11. Let G ¼ ðV ;EÞ 2 GUC and LGðvi; jÞ denotes the local information graph (see Definition 2.6)
for each vertex vi 2 V . We define f CðviÞ as
f CðviÞ :¼ aa1b
LGðvi ;1ÞðviÞþa2b

LGðvi ;2ÞðviÞþ���þaqbLGðvi ;qÞðviÞ; b 6 1; ak > 0; 1 6 k 6 q; a > 0; ð12Þ

where b is a certain vertex centrality measure and ak are arbitrary real positive coefficients.
2.3. Complexity analysis

For finalizing Section 2, we analyze the computational complexity of our resulting entropy measure If ðGÞ if
we use the presented information functionals f V ; f P and f C. We first notice that the computation of f V ; f P

and f C depends on determining j-spheres, for all vertices vi 2 V in a graph G ¼ ðV ;EÞ 2 GUC with an associ-
ated weight function x : E! f1g. That is, we have to compute the distances dðvi; vjÞ, for all pairs vi; vj 2 V .
But to compute those distances, we can apply an existing shortest path algorithm, e.g., Dijkstra’s algorithm
[11] jV j times for each vertex as a starting point. It was proven [8] that this algorithm requires time complexity
OðjV j3Þ. Particularly, we observe that the time complexity for computing the quantities pV ðviÞ; pP ðviÞ and
pCðviÞ is OðjV j2Þ because we have to parse the adjacency matrix of G starting from vi. Based on these consid-
erations, we finally obtain the following assertion.

Theorem 2.1. The time complexity to compute the entropies If V ðGÞ; If P ðGÞ, and If C ðGÞ for G 2 GUC is OðjV j3Þ.
3. Relations for graph entropies

The main goal of this section is to investigate relationships between the resulting graph entropies repre-
sented by inequalities. Because we are now able to use arbitrary information functionals to finally quantify
the structural information content of networks, we need assertions for examining the influence of an informa-
tion functional under consideration. In the following, we first explore the relatedness between the previously
defined functionals of Section 2.1 and finally of the associated entropies. For this, we first state a technical
assertion as follows.

Proposition 3.1. Let G ¼ ðV ;EÞ 2 GUC. For each vertex vi 2 V and for the information radii j ¼ 1; 2; . . . ; q, it

holds
lðPðLGðvi; jÞÞÞ ¼ j � jSjðvi;GÞj: ð13Þ
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Proof. Let vi 2 V and let Sjðvi;GÞ the j-sphere where its number of vertices is denoted by jSjðvi;GÞj. Based on
the definition of the local information graph regarding vi, there exist exactly jSjðvi;GÞj paths with length j. This
leads directly to the equation lðP ðLGðvi; jÞÞÞ ¼ j � jSjðvi;GÞj. h

Based on Proposition 3.1, we now able to express a relationship between the vertex probability values
regarding the information functionals f V and f P .

Theorem 3.2. Let G ¼ ðV ;EÞ 2 GUC and let f V and f P be the defined information functionals. If we define
xP ðviÞ :¼ max
16j6q

lðP ðLGðvi; jÞÞÞ; xP :¼ max
16i6jV j

xP ðviÞ; /P :¼ max
16j6q

bj and u :¼ min
16j6q

cj;
then, the inequality
pV ðviÞ < aq½/P xP�u� � pP ðviÞ; q½/PxP � u� > 0; a > 1; ð14Þ

holds. pV ðviÞ and pP ðviÞ denotes the i-th vertex probability regarding f V and f P .

Proof. Let G ¼ ðV ;EÞ 2 GUC. Based on the definition of f V and f P and the assumption that ci 6 bi, we get
with Proposition 3.1
f V ðviÞ ¼ ac1jS1ðvi;GÞjþc2jS2ðvi ;GÞjþ���þcqjSqðvi;GÞj
6 ab1lðPðLGðvi;1ÞÞÞþb2lðPðLGðvi ;2ÞÞÞþ���þbqlðP ðLGðvi ;qÞÞÞ ¼ f P ðviÞ;
if a > 1. Now, starting from the inequality f V ðviÞ 6 f P ðviÞ, we further obtain:
pV ðviÞ ¼
ac1jS1ðvi ;GÞjþc2jS2ðvi ;GÞjþ���þcqjSqðvi ;GÞjPjV j

j¼1f V ðvjÞ
6

ab1lðPðLGðvi ;1ÞÞÞþb2lðP ðLGðvi;2ÞÞÞþ���þbqlðPðLGðvi;qÞÞÞPjV j
j¼1f V ðvjÞ

6
ab1lðPðLGðvi ;1ÞÞÞþb2lðPðLGðvi;2ÞÞÞþ���þbqlðPðLGðvi ;qÞÞÞPjV j

j¼1f P ðvjÞ
�
PjV j

j¼1f P ðvjÞPjV j
j¼1f V ðvjÞ

¼ pP ðviÞ �
PjV j

j¼1f P ðvjÞPjV j
j¼1f V ðvjÞ

: ð15Þ
By using the definition of xP ðviÞ; xP ; /P and u, it holds
f P ðviÞ ¼ ab1lðPðLGðvi ;1ÞÞÞþb2lðP ðLGðvi;2ÞÞÞþ���þbqlðPðLGðvi;qÞÞÞ
6 ab1x

P ðviÞþb2x
P ðviÞþ���þbqxP ðviÞ < a/P xP ðviÞþ/P xP ðviÞþ���þ/P xP ðviÞ

¼ aq�/P �xP ðviÞ;
and, hence,
XjV j
j¼1

f P ðvjÞ < jV jaq�/P �xP
: ð16Þ
Similarly, we have:
f V ðviÞ ¼ ac1jS1ðvi;GÞjþc2jS2ðvi ;GÞjþ���þcqjSqðvi;GÞj > ac1þc2þ���þcq > aq�u;
and
XjV j
j¼1

f ðvjÞ > jV jaq�u: ð17Þ
By applying inequality (16) and (17), inequality (15) finally becomes to
pV ðviÞ < pP ðviÞ �
jV jaq�/P �xP

jV jaq�u ¼ pP ðviÞ � aq½/P xP�u�:
But this inequality equals inequality (14), the assertion of the theorem. h

Now, we use the result of Theorem 3.2 to express a relationship between the resulting graph entropies.
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Theorem 3.3. Let G ¼ ðV ;EÞ 2 GUC and let f V and f P be the defined information functionals. For the associated

graph entropies, it holds the inequality:
If V ðGÞ > aq½/P xP�u� If P ðGÞ � log aq½/P xP�u�
� �h i

; a > 1: ð18Þ
Proof. We start with considering inequality (14). If we multiply this inequality by �1, we get:
�pV ðviÞ > �aq½/P xP�u� � pP ðviÞ: ð19Þ

Now, by using the assertion of Theorem 3.2 and the monotonicity property of the logarithm function, we first
obtain:
�pV ðviÞ logðpV ðviÞÞ > �aq½/P xP�u� � pP ðviÞ � logðpP ðviÞÞ � aq½/P xP�u� � pP ðviÞ � log aq½/P xP�u�
� �

: ð20Þ
By doing this step for each vertex vi 2 V and by adding the obtained inequalities, one gets:
�pV ðv1Þ logðpV ðv1ÞÞ � pV ðv2Þ logðpV ðv2ÞÞ � � � � � pV ðvjV jÞ logðpV ðvjV jÞÞ

> aq½/P xP�u� �pP ðv1Þ logðpP ðv1ÞÞ � pP ðv2Þ logðpP ðv2ÞÞ � � � � � pP ðvjV jÞ logðpP ðvjV jÞÞ
� �

� aq½/P xP�u�

� log aq½/P xP�u�
� �XjV j

j¼1

pP ðvjÞ

¼ aq½/P xP�u� �pP ðv1Þ logðpP ðv1ÞÞ � pP ðv2Þ logðpP ðv2ÞÞ � � � � � pP ðvjV jÞ logðpP ðvjV jÞÞ
� �

� aq½/P xP�u�

� log aq½/P xP�u�
� �

:

That is, it holds:
�pV ðv1Þ logðpV ðv1ÞÞ � pV ðv2Þ logðpV ðv2ÞÞ � � � � � pV ðvjV jÞ logðpV ðvjV jÞÞ

> aq½/P xP�u� �pP ðv1Þ logðpP ðv1ÞÞ � pP ðv2Þ logðpP ðv2ÞÞ � � � � � pP ðvjV jÞ logðpP ðvjV jÞÞ
� �

� aq½/P xP�u�

� log aq½/P xP�u�
� �

: ð21Þ
By using the definition of the graph entropy, inequality (21) becomes finally to
If V ðGÞ > aq½/P xP�u� If P ðGÞ � log aq½/P xP�u�
� �h i

;

thus, inequality (18). h

In order to express a relation for the vertex probabilities regarding f V and f C, we use same principle as
shown in the proof of Theorem 3.2 and obtain the following theorem.

Theorem 3.4. Let G ¼ ðV ;EÞ 2 GUC and let f V and f C be the defined information functionals. For the vertex

probabilities pV ðviÞ and pCðviÞ, it holds:
pV ðviÞ > aq½uCmC�/�x� � pCðviÞ; ci P ai; a > 1; ð22Þ

where xðviÞ :¼ max16j6qjSjðvi;GÞj, x :¼ max16i6jV jðxðviÞÞ, / :¼ max16j6qcj, uC :¼ min16j6qaj, and

mC :¼ min16i6jV jmCðviÞ.

Now, we straightforward express a theorem that gives us a relationship for the associated graph entropies
of f V and f C.

Theorem 3.5. Let G ¼ ðV ;EÞ 2 GUC and let f V and f C be the defined information functionals. For the associated
graph entropies, it holds the relation:
If V ðGÞ < aq½uCmC�/�x� If C ðGÞ � log aq½uCmC�/�x�
� �h i

; a > 1: ð23Þ
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Proof. By using the assertion of Theorem 3.4, the proof of Theorem 3.5 can be obtained by analogously
applying the technique and steps of the proof of Theorem 3.3. h

As a final remark for this section, we note that one can easily obtain similar assertions for the relationship
between the vertex probabilities and the associated graph entropies regarding f P and f C.

4. Numerical results

In the following, we numerically determine the entropies of the example graphs of Fig. 3 by using the infor-
mation functionals f V , f P and f C. Based on the obtained numerical results, we are able to compare the result-
ing graph entropies to study the influence of the chosen information functionals. To obtain the numerical
results for our example graphs G1 and G2, we now apply Definitions 2.9 and 2.10 and Proposition 3.1. As
an important remark, we notice that we generally choose the coefficients ck; bk and ak for emphasizing certain
structural characteristics of the underlying graphs, e.g., high vertex degrees etc. Without loss of generality, we
now choose the ck; bk and ak such that ck ¼ bk ¼ ak and c1 > c2 > c3 > c4. Here, we set
c1 :¼ 4; c2 :¼ 3; c3 :¼ 2; c4 ¼ 1. Further, we observe that for G1 it holds qðG1Þ ¼ 4. Now, by applying Def-
inition 2.9, we obtain:
f V ðv1Þ ¼ f V ðv4Þ ¼ f V ðv5Þ ¼ f V ðv8Þ ¼ a2c1þ2c2þ2c3þc4 ; ð24Þ

f V ðv2Þ ¼ f V ðv7Þ ¼ a2c1þ3c2þ2c3 ; ð25Þ

f V ðv3Þ ¼ f V ðv6Þ ¼ a3c1þ3c2þc3 : ð26Þ
By using the defined values for ck, we get:
f V ðv1Þ ¼ f V ðv4Þ ¼ f V ðv5Þ ¼ f V ðv8Þ ¼ a19; ð27Þ

f V ðv2Þ ¼ f V ðv7Þ ¼ a21; ð28Þ

f V ðv3Þ ¼ f V ðv6Þ ¼ a23: ð29Þ
Now, if we now apply Eq. (5) and Definition 2.8, the equation to express the structural information content of
G1 becomes to
:

If V ðG1Þ :¼ �
X8

i¼1

pV ðviÞ logðpV ðviÞÞ ¼ � 4
a19

4a19 þ 2a21 þ 2a23
log

a19

4a19 þ 2a21 þ 2a23

� ��

þ2
a21

4a19 þ 2a21 þ 2a23
log

a21

4a19 þ 2a21 þ 2a23

� �
þ 2

a23

4a19 þ 2a21 þ 2a23
log

a23

4a19 þ 2a21 þ 2a23

� �	
ð30Þ
To compute the entropy of G1 regarding f P , we straightforward apply Proposition 3.1 to the Eqs. (24)–(26),
and infer
v1

v8

v2

v3

v6

v7

v4

v5

G1

v1

v3

v4

v6v2

v5

G2

Fig. 3. G1 and G2 are undirected and connected graphs.
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f P ðv1Þ ¼ f P ðv4Þ ¼ f P ðv5Þ ¼ f P ðv8Þ ¼ a2c1þ4c2þ6c3þ4c4 ; ð31Þ
f P ðv2Þ ¼ f P ðv7Þ ¼ a2c1þ6c2þ6c3 ; ð32Þ
f P ðv3Þ ¼ f P ðv6Þ ¼ a3c1þ6c2þ3c3 ; ð33Þ
f P ðv1Þ ¼ f P ðv4Þ ¼ f P ðv5Þ ¼ f P ðv8Þ ¼ a36; ð34Þ
f P ðv2Þ ¼ f P ðv3Þ ¼ f P ðv6Þ ¼ f P ðv7Þ ¼ a38; ð35Þ
and, hence,
If P ðG1Þ :¼ �
X8

i¼1

pP ðviÞ logðpP ðviÞÞ;

¼ � 6
a36

6a36 þ 2a38
log

a36

6a36 þ 2a38

� �
þ 2

a38

6a36 þ 2a38
log

a38

6a36 þ 2a38

� �� 	
: ð36Þ
In order to compute If C for G1, we exemplarily use Eq. (11) as local property measure. Eq. (11) expresses how
central a vertex vi of the local information graph LGðvi; jÞ is. Once again, we want to emphasize that the local
information graph can be sometimes not uniquely obtained because there often exists more than one path
from vi to a certain vertex in the corresponding j-sphere. In such a case, we therefore choose LGðvi; jÞ such
that bLGðvi ;jÞðviÞ attains its maximum. Starting from this assumption, we have:
f Cðv1Þ ¼ f Cðv8Þ ¼ a2:82; ð37Þ
f Cðv4Þ ¼ f Cðv5Þ ¼ a2:88; ð38Þ
f Cðv2Þ ¼ f Cðv7Þ ¼ a2:59; ð39Þ
f Cðv3Þ ¼ a2:08; ð40Þ
f Cðv6Þ ¼ a2:04; ð41Þ
and
If C ðG1Þ :¼ �
X8

i¼1

pCðviÞ logðpCðviÞÞ ¼ � 2
a2:82P

j¼8f CðvjÞ
log

a2:82P
j¼8f CðvjÞ

 !"

þ2
a2:88P

j¼8f CðvjÞ
log

a2:88P
j¼8f CðvjÞ

 !
þ 2

a2:59P
j¼8f CðvjÞ

log
a2:59P

j¼8f CðvjÞ

 !

þ a2:08P
j¼8f CðvjÞ

log
a2:08P

j¼8f CðvjÞ

 !
þ a2:04P

j¼8f CðvjÞ
log

a2:04P
j¼8f CðvjÞ

 !#
; ð42Þ
where
P

j¼8f CðvjÞ ¼ 2a2:82 þ 2a2:88 þ 2a2:59 þ a2:08 þ a2:04. By applying the same steps as stated above, the pro-
cess of determining the structural information content of If V ðG2Þ, If P ðG2Þ and If C ðG2Þ (it holds qðG2Þ ¼ 3) is
the same. Finally, we obtain:
If V ðG2Þ :¼ �
X6

i¼1

pV ðviÞ logðpV ðviÞÞ

¼ � 4
a14

4a14 þ 2a18
log

a14

4a14 þ 2a18

� �
þ 2

a18

4a14 þ 2a18
log

a18

4a14 þ 2a18

� �� 	
; ð43Þ

If P ðG2Þ :¼ �
X6

i¼1

pP ðviÞ logðpP ðviÞÞ

¼ � 4
a28

4a28 þ 2a24
log

a28

4a28 þ 2a24

� �
þ 2

a24

4a28 þ 2a24
log

a24

4a28 þ 2a24

� �� 	
; ð44Þ
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Fig. 4. Entropies of the graphs G1 and G2 shown in Fig. 3 regarding the information functionals f V , f P and f C . The entropies are plotted
in dependence of the value a.
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and
If C ðG2Þ :¼ �
X6

i¼1

pCðviÞ logðpCðviÞÞ

¼ � 4
a4:28

4a4:28 þ 2a1:93
log

a4:28

4a4:28 þ 2a1:93

� �
þ 2

a1:93

4a4:28 þ 2a1:93
log

a1:93

4a4:28 þ 2a1:93

� �� 	
: ð45Þ
Now, to interpret the numerical results we look at Fig. 4. We first consider the entropies of G1 and G2 regarding
the information functionals f V and f P . Here, the entropies were plotted in dependence of the free parameter a.
As a first result, we observe that the graph entropy If V ðG1Þ is always larger than If V ðG2Þ. In terms of the inter-
connectedness, this can be explained by the intuitive observation that G1 is structurally more complex than the
graph structure of G2. We also see that based on the definition of f V , a stronger branching of a graph leads to
larger values of the cardinalities of the j-spheres. In case of using the information functional f P , we also see in
Fig. 4 that If P ðG1Þ is always larger than If P ðG2Þ. This observation can be easily understood by applying Prop-
osition 3.1. The assertion of this proposition is that the sum of the path lengths of the local information graph
regarding a vertex vi is equal to the product of the cardinality of the corresponding j-sphere and the value of the
local information radius. If a > 1, this implies that the sum of the exponents of f P is always larger than in case
of f V . For interpreting the numerical results regarding the information functional f C, we observe that it holds
If C ðG1Þ > If C ðG2Þ. This result corresponds with the observations achieved in case of using f V and f P . In this
case we also find that for a > 1, the values of the entropies If C ðG1Þ and If C ðG2Þ are always larger than the values
of the other corresponding graph entropies. Starting from the defined information functionals we finally find
that our entropy measure is able to reflect the essence of graph branching meaningfully.

5. Summary and conclusion

This paper dealt with the problem of analyzing and understanding information processing in complex net-
works by using information-theoretical methods. One major problem we addressed was to quantify structural
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information in networks based on so called information functionals. In this work we considered a complex
network as an undirected and connected graph. Based on such information functionals, different graphs entro-
pies can be directly defined. As a generalization, we introduced the definition of the local information graph
and of the local information radius. Starting from these definitions, we are now able to define the entropy of a
graph by using several structural properties or local property measures. As examples for information function-
als, we used functionals which are based on metrical properties of graphs, e.g., vertex spheres, path lengths and
local property measures (shortest path centrality) for finally investigating the behavior of the resulting graph
entropy. Then, in Section 2, we further noticed that the computational complexity to determine the final graph
entropies is polynomial. As a main result of this paper, we proved theorems for describing relationships
between graph entropies concerning the defined information functionals. This is an important step to obtain
theoretical results for comparing graph entropies and for studying the influence of the information functionals
under consideration. The obtained inequalities can be also very useful to classify graphs regarding their entro-
pies. Finally, in Section 4, we presented some numerical results to study the influence of the different informa-
tion functionals on the resulting entropies. We obtained the result that the entropy measures based on the
defined information functionals (f V , f P , and IC) can detect the structural complexity between graphs and
therefore capture important structural information meaningfully.
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