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& In this article, we present information-theoretic concepts for analyzing complex networks.
We see that the application of information-theoretic concepts to networks leads to interesting tasks
and gives a possibility for understanding information processing in networks. The main contri-
bution of this article is a method for determining the structural information content of graphs that
is based on a tree decomposition. It turns out that the computational complexity of the underlying
algorithm is polynomial. Finally, we present some numerical results to study the influence of the
used methods on the resulting information contents.

INTRODUCTION

In many scientific areas, e.g., biology, chemistry, linguistics, and physics,
it is known that systems can be described as interaction networks of the
underlying components (Bonchev and Rouvray 2005; Mehler 2006). Such
networks, e.g., protein-protein, signaling, synthesis, and reaction networks,
have been intensely investigated, especially in computer science, computa-
tional biology, and chemistry (Bonchev and Rouvray 2005; Claussen 2007b;
Emmert-Streib 2007; Gagneur, Krause, Bouwmeester, and Casari 2004; Tem-
kin, Zeigarnik, and Bonchev 1996). Once a network is theoretically or
experimentally inferred, existing methods from quantitative network analy-
sis are basically applicable for investigating such networks structurally. The
two main categories in this area deal with network comparison and charac-
terization, respectively. The problem of structurally comparing networks is
mostly understood as the task of measuring their structural similarity. This
task is often referred to as graph matching (Bunke 1983; Bunke 2000a,b,
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1998; Bunke and Neuhaus 2007; Dehmer and Mehler 2007; Emmert-Streib,
Dehmer, and Kilian 2005; Gernert 1979; Kaden 1982, 1986; Sobik 1982,
1986; Solé and Valverde 2004; Zelinka 1975). In contrast, to characterize
networks structurally means that we are searching for so-called network
characteristics (Barabasi and Oltvai 2004; Bornholdt and Schuster 2003;
Brandes and Erlebach 2005; Gaertler 2005; Dorogovtsev and Mendes
2003; Mason and Verwoerd 2007; Skorobogatov and Dobrynin 1988) which
capture structural information of the given networks.

Another paradigm for analyzing complex networks can be obtained by
combining methods from graph theory, information theory, and statistics.
Particularly, it turned out that information-theoretic methods, e.g.,
entropy-based approaches are powerful tools to investigate complex sys-
tems on a graph or sequence-based level (Bonchev and Rouvray 2005;
Bonchev 1983; Claussen 2007a; Kullback 1959; Kullback and Leibler
1951; Shannon and Weaver 1997; Solé and Valverde 2004). In order to give
a short overview on such methods, we now briefly outline the most impor-
tant information-theoretic and statistical methods to characterize or
compare network structures:

. Classical information measures, e.g., entropy, conditional entropy,
andmutual information applied to complex networks (Bonchev 1979,
1983, 2003; Bonchev, Balaban, and Mekenyan 1980; Bonchev and
Trinajstić 1977; Bonchev and Rouvray 2005; Fujii and Yuki 1997;
Kieffer and Yang 1997; Shannon and Weaver 1997; Solé and Valverde
2004).

. Entropic measures for characterizing graph classes, e.g., perfect graphs
(Körner 1973; Simonyi 2001).

. Information-theoretic measures to determine the structural information
content of a network (Bonchev 1983; Dehmer 2007b; Dehmer and
Emmert-Streib 2008; Mowshowitz 1968a–d; Rashewsky 1955; Trucco
1956).

. Complexity measures for networks based on the principle of Kol-
mogorov-complexity (Bonchev 1995, 2003; Li and Vit�aanyi 1997).

. Information-theoretic robustness measures for complex networks
(Emmert-Streib and Dehmer 2008a, 2007c).

. Statistical correlation measures for structurally characterizing complex
networks (Solé and Valverde 2004).

. Simulated annealing methods to investigate network structures (Solé and
Valverde 2004; Schweitzer, Ebeling, Rosé, and Weiss 1996).

In this article, we mainly deal with the problem of applying SHANNON’s
theory (Shannon and Weaver 1997) to complex network structures. Here,
a structure is considered as an outcome of an arbitrary communication
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(Bonchev 2003). Then, the classical SHANNON-entropy can be used to
determine the so-called structural information content of a network
(Mowshowitz 1968–d; Rashewsky 1955; Trucco 1956) where this infor-
mation content will be interpreted as the entropy of the underlying net-
work topology. A main focus of this article is to develop methods to
determine the structural information content of graphs which are
efficiently computable, i.e., the time complexity of the underlying algor-
ithm is polynomial. As a short outline, the main contribution of this article
is a method for determining the structural information content of graphs
by using a graph decomposition approach. For this, we also introduce some
special information functionals that quantify structural information of a
decomposed graph. We remark that a method to determine the structural
information content of arbitrary graphs by using an information functional
approach has been introduced in Dehmer (2007b). The computational
complexity of the decomposition approach will be analyzed in the section
entitled Complexity Analysis. Other concepts we want to present, i.e., local
information graphs and further information functionals have already been
introduced in Dehmer (2008a).

STRUCTURAL INFORMATION CONTENT OF GRAPHS

We begin by stating some application areas dealing with information-
theoretic concepts applied to networks. More precisely, we want to focus
on such applications that address the problem of quantifying structural
information in networks. In order to give a short overview on the existing
methods, we outline some known approaches for determining the struc-
tural information content of graphs which are often used in biology,
mathematical chemistry, and psychology (Bonchev 1983, 2003; Diudea,
Gutman, and Jantschi 2001; Sommerfeld 1994; Sommerfeld and Sobik
1994).

Approaches in Biology and Chemistry

In the beginning of the 1950s, there was considerable interest in
applying information-theoretic concepts to scientific areas different from
electrical engineering, language theory, and thermodynamics (Bonchev
2003; Shannon and Weaver 1997). Then, it turned out that the theoretical
framework of information theory can also be very useful in investigating
living systems, i.e., cell systems in the, at that time, emerging frontier area
of applying information-theoretic concepts in biology. We notice that the
first contributions in this area have been achieved by Morowitz (1953),
Quastler (1953), Dancoff and Quastler (1953), Linshitz (1953), and
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Rashewsky (1955). Thereby, Rashewsky (1955) made the first contribution
regarding the determination of the structural information content of a
graph. This contribution is based on finding distinguishable vertices
and, then, to apply SHANNON’s entropy formula to determine the infor-
mation content. After this starting point, Mowshowitz (1968a–d) gave a
pure mathematical treatment of this problem by using algebraic methods
(Bonchev 2003). By using a certain equivalence criterion (utilizing vertex
orbits), a graph-based system with n elements can be partitioned into k
classes. Hence, a probability distribution can also be obtained that leads
to the definition of an entropy of this system, i.e., its structural infor-
mation content. Further, he defined a chromatic information content
of a graph and examined graph operations like complement, sum, join
etc., for investigating the change of the corresponding information
measures.

Apart from biology, information-theoretic techniques have also been
intensely applied in mathematical chemistry, e.g., to analyze and quantify
the structural information content, the combinatorial complexity, and
molecular branching of chemical graph structures (Bertz 1981, 1983;
Bonchev 1979, 1983, 2003; Bonchev and Trinajstić 1977; Caporossi,
Gutman, Hansen, and Pavlovi 2003; Diudea, Gutman, and Jäntschi
2001; Minoli 1975). The first rigorous and extensive treatment of so-
called information indices used for quantifying structural information
in chemical graphs has been stated by Bonchev (1979, 1983); Bonchev
and Trinajstić (1977). To develop such indices, Bonchev (1983) has been
using graph-theoretical quantities or other representations of structured
objects to quantify structural information of graphs representing chemi-
cal structures. A short listing of known indices is now expressed
as follows:

. Information indices based on topological characteristics, e.g., vertex
orbits (Bonchev 1983; Mowshowitz 1968d; Rashewsky 1955; Trucco 1956).

. Information indices based on chromatic decompositions (Bonchev 1983;
Harary 1969).

. Information indices based on adjacency matrices (Bonchev 1983).

. Information indices based on vertex degrees (Bonchev 1983).

. Information indices based on the incidence matrix of a graph (Bonchev
1983).

. Information indices based on cycle matrices of a graph (Bonchev 1983).

. Information indices based on distancematrices of graphs (Bonchev 1983).

. Information indices based on graph decompositions, e.g., the HOSOYA-
graph decomposition (Bonchev 1983; Hosoya 1971).

. Centric indices and connectivity indices (Bonchev 1983).
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As a direct consequence, Bonchev (2003) also used the above stated
information indices for measuring the structural complexity of chemical
molecule structures. For example, a possible definition for expressing
the structural complexity states, the higher the information content of
a (chemical) system, the more complex is the system (Bonchev 2003).
Further definitions of so-called molecular complexity and results related
to applying information-theoretical techniques to chemical graphs can
be found in Bonchev (1983, 2003); Bonchev and Rouvray (2005). To
finalize our short review on methods for measuring the structural infor-
mation content of graphs in biology and chemistry, we now briefly out-
line a generalization of classical information indices recently introduced
by Dehmer and Emmert-Streib (2008). In Dehmer and Emmert-Streib
(2008), this entropy measure was mainly introduced for detecting mol-
ecular branching in chemical graphs. If we assume that jV j denotes
the number of vertices of a graph G, n denotes the number of different
(obtained) sets of vertices, jVi j is the number of elements in the ith set
of vertices, and we set Pi ¼ jVi j

jV j, then, SHANNON’s entropy formulas can be
stated as (Bonchev 1983):

I ðGÞ ¼ jV j logðjV jÞ �
Xn
i¼1

jVi j logðjVi jÞ ð1Þ

or

I ðGÞ ¼ �
Xn
i¼1

Pi logðPiÞ: ð2Þ

We notice that Equation (2) now represents the mean information con-
tent of G. We clearly observe in Equations (1) and (2) that there are no
free parameters or coefficients because, e.g., the quantities Pi are com-
pletely determined by the chosen partitioning (Dehmer and Emmert-
Streib 2008). In contrast, we presented in Dehmer and Emmert-Streib
(2008) the parametric entropy measure

If V ðGÞ :¼ �
XjV j

i¼1

f V ðtiÞPjV j
j¼1 f

V ðtjÞ
log

f V ðtiÞPjV j
j¼1 f

V ðtjÞ

0
@

1
A; ð3Þ

where

f V ðtiÞ :¼ ac1jS1ðti ;GÞjþc2jS2ðti ;GÞjþ���þcpðGÞjSpðGÞðti ;GÞj;
ck > 0; 1 � k � qðGÞ; a > 0:

ð4Þ
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Here, jSjðti;GÞj denotes the cardinality of a j-sphere of ti regarding an
undirected and connected graph G. f V ðtiÞ represents a so-called infor-
mation functional that is based on metrical graph properties (Skorobogatov
and Dobrynin 1988). Then, Equation (3) represents a family of parametric
entropic measures. Following Dehmer and Emmert-Streib (2008), we have
generalized the classical entropy measures for graphs represented by
Equations (1) and (2) because we now have the possibility to weight certain
structural characteristics of a graph. This can be done by varying the free
parameters a and ck . As an important remark, we want to notice that the local
information spread in a graph can also be investigated by examining the
ranges of a and ck . In a subsequent section, we express the concept of an
arbitrary information functional (Dehmer 2008a) and will give further
examples for such functionals. As a result, we also obtain families of
parametric graph entropy measures.

Approaches in Psychology

In the previous section, we gave a brief overview on methods to deter-
mine the structural information content of graphs which were mostly used
in biology and mathematical chemistry. On the one hand, a main character-
istic of the outlined methods is that the inferred or constructed graph
structure can be considered as the result of a certain information process
or communication between the elements of the underlying system. On
the other hand, all shown methods dealt with the application of SHANNON’s
entropy formula (Shannon and Weaver 1997).

In this section, we briefly sketch a method for quantifying structural
information of interpreted graphs, i.e., graphs with certain vertex and
edge labels (Sommerfeld 1994; Sommerfeld and Sobik 1994). This
method is not based on SHANNON’s entropy formula and was originally
designed for measuring structural information of so-called cognitive struc-
tures (Sommerfeld 1994; Sommerfeld and Sobik 1994). The first step to
define such a method was to formalize a structure representing a piece of
structural information (Sommerfeld 1994; Sommerfeld and Sobik 1994).
This was done by using relational structures representing graphs. Second,
a set of different interpretations was defined in the process of the
formation of an internal representation based on a portion of external
represented structural information (Sommerfeld and Sobik 1994). Hence,
for measuring the structural information content of a cognitive structure
represented by a graph, the introduction of an interpretation system was
crucial. In Sommerfeld and Sobik (1994), an interpretation system
describes relationships between external and internal information. As a
result, the structural information content of a cognitive structure has
been interpreted as the knowledge on the existence of certain relations
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(based on edge and vertex labelings) between elements of this structure,
i.e., the vertices of the graph. We want to emphasize that the application
of this approach for measuring the structural information content does
not result in a numerical value. In contrast, it is expressed by a set of
interpretations (Sommerfeld and Sobik 1994). Further, it is important
to mention that there exists a partial order between different pieces of
structural information which are given by the relation of set inclusion
(Sommerfeld and Sobik 1994). Starting from such a relation, in Sommer-
feld and Sobik (1994), it was shown that it is now possible to compare cer-
tain portions of structural information. By applying this approach, it is
not always possible to compare arbitrary portions of structural infor-
mation because the defined structural information content depends on
a chosen interpretation regarding the underlying structure (Sommerfeld
and Sobik 1994). As a final remark, we now see that the just-mentioned
definition (Sommerfeld and Sobik 1994) for expressing the structural
information content of a graph is clearly distinct from the methods pre-
sented in the section on Approaches in Biology and Chemistry. These
information measures were based on inferring a probability distribution
to finally define the underlying topological entropy. Hence, for each unla-
beled graph, the structural information content can be computed. In con-
trast, the definition of the structural information content we just outlined
is not based on pure structural aspects only. The information content of a
cognitive structure has been defined rather as a set of knowledge relations
with respect to a chosen interpretation system (Sommerfeld and Sobik
1994).

ENTROPIC MEASURES FOR NETWORKS

We now present entropic measures based on graph decompositions to
determine the structural information content of complex networks. For
this, we first state some mathematical preliminaries (Buckley and Harary
1990; Cover and Thomas 2006; Godsil and Royle 2001; Harary 1969;
Skorobogatov and Dobrynin 1988).

Mathematical Preliminaries

In this article we focus on undirected, connected graphs without loops

and multiple edges. G ¼ ðV ;EÞ; jV j < 1; E �
�V
2

�
denotes a finite, undir-

ected and connected graph, e.g., see Figure 1. GUC denotes the set of finite,
undirected, and connected graphs. We call such a graph G ¼ ðV ; EÞ
connected if for arbitrary vertices ti and tj there exists an undirected path
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from ti to tj . The degree of a vertex t 2 V is denoted by dðtÞ and equals the
number of edges e 2 E which are incident with t. A graph G 2 GUC is called
undirected tree if G is connected and cycle free. Further, an undirected
rooted tree T ¼ ðV ; EÞ represents an undirected graph which possesses
exactly one vertex r 2 V that is called root for which every edge is directed
away from r. Hence, all vertices in T are uniquely accessible from r. The level
of a vertex t in a rooted tree T is simply the length of the path from r to t.
The path with the largest path length from the root to a leaf is denoted as h.
In order to define graph entropy measures, we also need to introduce some
metrical properties of graphs (Skorobogatov and Dobrynin 1988). dðu; tÞ
denotes the shortest distance between u 2 V and t 2 V where d is a metric.

FIGURE 2 Visualized j-spheres of ti ; j ¼ 1; 2; 3.

FIGURE 1 An undirected and connected graph G.
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The quantity rðtÞ ¼ maxu2V dðu; tÞ is called eccentricity of t. qðGÞ ¼
maxt2V rðtÞ and rðGÞ ¼ mint2V rðtÞ is called the diameter and the radius
of G, respectively. We call the set

Sjðti ;GÞ :¼ ft 2 V j dðti ; tÞ ¼ j ; j � 1g; ð5Þ

the j-sphere of ti regarding G. Sjðti ;GÞ is simply the set of vertices whose
distances to ti equal j. As an example, Figure 2 shows the j-spheres
ðj ¼ 1; 2; 3Þ for a graph G 2 GUC . Starting from the definition of j-spheres
to obtain further information functionals, we define the local information
graph of G that has been originally defined in Dehmer (2008a). This defi-
nition is based on the idea that certain information spreads out via shortest
paths in a graph. Let G ¼ ðV ; EÞ 2 GUC . For a vertex ti 2 V , we define
Sjðti ;GÞ ¼ ftuj ; twj

; . . . ; txjg and the induced shortest paths,

P
j
1ðtiÞ ¼ ðti ; tu1 ; tu2 ; . . . ; tuj Þ;

P
j
2ðtiÞ ¼ ðti ; tw1 ; tw2 ; . . . ; twj Þ;

..

. ..
.

P
j
k2
ðtiÞ ¼ ðti ; tx1 ; tx2 ; . . . ; txj Þ:

Their edge sets are defined by

E1 ¼ ffti ; tu1g; fvu1 ; vu2g; fvu2 ; vu3g; . . . ; ftuj�1 ; tujgg;
E2 ¼ ffti ; tw1g; fvw1 ; vw2g; ftw2 ; tw3g; . . . ; ftwj�1 ; twjgg;

..

. ..
.

Ekj ¼ ffti ; tx1g; fvx1 ; vx2g; ftx2 ; tx3g; . . . ; ftxj�1 ; txjgg:

By setting

VLG :¼ fti ; tu1 ; tu2 ; . . . ; tujg [ fti ; tw1 ; tw2 ; . . . ; twjg[
� � � [ fti ; tx1 ; tx2 ; . . . ; txjg

and

ELG :¼ E1 [ E2 [ � � � [ Ekj ;

we define the local information graph LGðti ; jÞ of G regarding ti by

LGðti ; jÞ ¼ ðVLG ; ELG Þ: ð6Þ
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Figure 3 shows the local information graphs LGðti ; 1Þ and LGðti ; 2Þ. Its paths
are induced by DIJKSTRA-distances (Dijkstra 1959). We want to emphasize
that the local information graph regarding ti 2 V cannot always be
uniquely defined because often there exists more than one path from ti
to a certain vertex in the corresponding j-sphere (Dehmer 2008a). In order
to introduce the classical entropy formally, we assume X to be a discrete
random variable with alphabet A and pðxiÞ ¼ PrðX ¼ xiÞ be the probability
mass function of X. Finally, the entropy of X is defined by

H ðX Þ :¼ �
X
xi2A

pðxiÞ logðpðxiÞÞðxi 2 AÞ: ð7Þ

Entropic Measures Based on Graph Decompositions

For example, in mathematics or computer science, the solution of
many problems is based on the decomposition of objects for reducing
the complexity of the given problem (Bos�aak 1990; Wheater and McCue
1992; Colbourn and Ling 2003). Starting from structured objects, one
possibility to solve, e.g., a graph similarity problem, is to locally decompose
the graphs under consideration into smaller graphs with a certain property,
e.g., tress, etc. (Bos�aak 1990; Horv�aath, Gärtner, and Wrobel 2004; Emmert-
Streib, Dehmer, and Kilian 2005). This aims to process the decomposed
graphs more properly than the initial graphs. In this section, we present
a method for determining the structural information content of graphs
which is based on a graph decomposition. At this point, we want to point
out that the problem of calculating the information content of a graph
based on determining vertex partitions can be difficult and computationally
inefficient, e.g., for large graphs. However, since our method is based on a
tree decomposition of given graphs, we find that for tree-like graphs a ver-
tex partitioning can be naturally obtained from the inferred level parti-
tions. To introduce our method, we first express the definition of a

FIGURE 3 Local information graphs of G (see Figure 2) regarding ti ; j ¼ 1; 2.
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(undirected) generalized tree representing a rooted tree-like structure
(Dehmer and Emmert-Streib 2008). We remark that directed generalized
trees have been introduced in Dehmer, Mehler, and Emmert-Streib
(2008) and Mehler, Dehmer, and Gleim (2004).

Definition 3.1: Let T ¼ ðV ; E1Þ be an undirected finite rooted tree. jLj
denotes the cardinality of the level set L ¼: fl0; l1; . . . ; lhg. The longest
length of a path in T is denoted as h. It holds h ¼ jLj � 1. L : V ! L is a
surjective mapping and it is called a multi-level function if it assigns to each
vertex an element of the level set L. A graph H ¼ ðV ; EGT Þ is called a finite,
undirected generalized tree if its edge set can be represented by the union
EGT :¼ E1 [ E2 [ E3, where

. E1 forms the edge set of the underlying undirected rooted tree T.

. E2 denotes the set of horizontal across-edges. A horizontal across-edge
does not change a level i.

. E3 denotes the set of edges which change at least one level.

Figure 4 shows a rooted tree T and a generalized tree H. We now
describe the algorithm for uniquely decomposing a graph G 2 GUC into a
set of undirected generalized trees (Emmert-Streib, Dehmer, and Kilian
2005).

Algorithm 3.1: A graph G 2 GUC with jV j vertices can be locally decompo-
sed into a set of generalized trees as follows: assign vertex labels to all ver-
tices from 1 to jV j. These labels form the label set LS ¼ f1; . . . ; jV jg. Choose
a desired height of the trees that is denoted by h. Choose an arbitrary label
from LS , e.g., i. The vertex with this label is the root vertex of a tree. Now,
perform the following steps:

1. Calculate the shortest distance from vertex i to all other vertices in the
graph G, e.g., by the algorithm of DIJKSTRA, see Cormen, Leiserson,
and Rivest (1990) and Dijkstra (1959).

FIGURE 4 An ordinary rooted tree T and a generalized tree H. It holds jLj ¼ 4 and h ¼ jLj � 1 ¼ 3.
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2. The vertices with distance k are the vertices on the kth level of the result-
ing generalized trees. Select all vertices of the graph up to distance h,
including the connections between the vertices. Connections to vertices
with distance >h are deleted.

3. Delete the label i from the label set LS .
4. Repeat this procedure if LS is not empty by choosing an arbitrary label

from LS ; otherwise terminate.

Under the assumption that for all vertices of G, there exists a shortest
path of length h, the application of Algorithm (3.1) results in a set SH

G con-
sisting of jV j generalized trees with height h. Otherwise, the resulting tree
set SH

G contains generalized trees with hi < h where hi denotes the resulting
height of the ith generalized tree. Figure 5 shows the result of our
decomposition method applied to the graph of Figure 1. Because one
can easily observe that a vertex ordering on a certain level is generally
not uniquely assignable, we therefore omitted in Figure 5 the vertex labels
in the resulting generalized trees. We want to emphasize that to define the
topological entropy of a generalized tree, such a vertex ordering on a
generalized tree level is not necessarily required. In the following, we
define the entropy of the decomposed generalized trees to measure the
structural information content of a graph G 2 GUC . A similar definition of
a related graph class can be found in Emmert-Streib and Dehmer (2007b).

Definition 3.2: Let H be a generalized tree with height h. jV j denotes the
total number of vertices and jVij denotes the number of vertices on the ith
level, respectively. A probability distribution to H is assigned as follows: we
set pVi :¼ jVi j=ðjV j � 1Þ Then, the vertex entropy of a generalized tree H is

FIGURE 5 Result of the application of Algorithm (3.1) by using the graph of Figure 1. We set
h :¼ qðGÞ ¼ 3.
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defined by

I V ðH Þ :¼ �
Xh
i¼1

pVi logðpVi Þ: ð8Þ

From this definition, we see immediately that this entropy attains its
maximum if H possesses the same number of vertices on each level
i; 1 � i � h. As an example, H5 depicted in Figure 5 has the maximal vertex
entropy according to Definition 3.2. Correspondingly, we now define the
edge entropy of a generalized tree H.

Definition 3.3: Let H be a generalized tree with height h. jE j denotes the
total number of edges and jEi j denotes the number of edges on the ith
level, respectively. A probability distribution to H is assigned as follows:
we set pEi :¼ jEi j

2jE j�dðrÞ. Then, the edge entropy of a generalized tree H is
defined by

I EðH Þ :¼ �
Xh
i¼1

pEi logðpEi Þ: ð9Þ

We observe that the edge entropy of a generalized tree H attains its
maximum if H possesses the same number of edges on each level
i; 1 � i � h. Figure 6 shows two generalized trees withmaximal edge entropy
according to Definition 3.3. Now, we are able to define the structural infor-
mation content of a graph G by using the proposed decomposition method.

Definition 3.4: Let G 2 GUH and SH
G :¼ fH1;H2; . . . ;HjV jg be the associated

set of generalized trees. We now define the structural information content
of G by

I V ðGÞ :¼ �
XjV j

i¼1

I V ðHiÞ: ð10Þ

and

I EðGÞ :¼ �
XjV j

i¼1

I EðHiÞ: ð11Þ

FIGURE 6 Two generalized trees with maximal edge entropy.
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Entropic Measures Based on Information Functionals

In this section, we generally present the concept of an arbitrary infor-
mation functional (Dehmer 2008a) to quantify structural information in
a network. Apart from the expressed information functional previously
stated, we now give further examples for information functionals to demon-
strate that this concept can be very useful for solving practical problems.

Information Functionals: Metrical Properties
Let G 2 GUC and let S be a certain set, e.g., a set of vertices or paths, etc.

The mapping f : S ! Rþ is called an information functional of G. It is
always assumed that f is monotonous. To define a specific information
functional that captures certain structural information of a given graph
G, the set S has to be defined concretely. This leads to special information
functionals, e.g., based on metrical properties, etc. We now start from an
arbitrary graph G 2 GUC and define for ti 2 V the quantities

pðtiÞ :¼ f ðtiÞPjV j
j¼1 f ðtjÞ

: ð12Þ

f represents an arbitrary information functional. We interpret the quantities
pðtiÞ as vertex probabilities because

pðt1Þ þ pðt2Þ þ � � � þ pðtjV jÞ ¼ 1;

holds. Based on Equation (12), we therefore define the entropy of G as
follows (Dehmer 2008a).

Definition 3.5: Let G 2 GUC and let f be an arbitrary information func-
tional. We define the entropy of G by

If ðGÞ :¼ �
XjV j

i¼1

f ðtiÞPjV j
j¼1 f ðtjÞ

log
f ðtiÞPjV j
j¼1 f ðtjÞ

0
@

1
A: ð13Þ

In the following, we give some examples for information functionals. We
already stated an information functional (see Equation (4)) which is based
on vertex-sphere cardinalities, i.e., metrical properties of graphs. Another
functional that is also based on metrical graph properties and uses the
definition of the local information graph of G can be defined as follows
(Dehmer 2008a).
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Definition 3.6: Let G ¼ ðV ; EÞ 2 GUC . For each vertex ti 2 V and for
j ¼ 1; 2; . . . ;qðGÞ, we determine the local information graph LGðti ; jÞ,
where LGðti ; jÞ is induced by the paths P

j
1ðtiÞ; Pj

2ðtiÞ; . . . ;P j
kj
ðtiÞ. The quantity

lðP j
lðtiÞÞ 2 N;l 2 f1; 2; . . . ; kjg denotes the length of P

j
lðtiÞ and

lðP ðLGðti ; jÞÞ :¼
Xkj
l¼1

lðP j
lðtiÞÞ;

expresses the sum of the path lengths associated to each LGðti; jÞ. The infor-
mation functional f P ðtiÞ is defined by

f P ðtiÞ :¼ ab1lðPðLG ðti ;1ÞÞþb2lðPðLG ðti ;2ÞÞþ���þbqðGÞlðPðLG ðti ;pðGÞÞÞ

bk > 0; 1 � k � qðGÞ; a > 0:
ð14Þ

bk are arbitrary real positive coefficients.

In order to show that so-called local property measures (Dehmer
2008a) can also be used for defining information functionals, we express
the following definition. Here, the information functional is based on
an arbitrary vertex centrality measure (Brandes 2001; Sabidussi 1966;
Wasserman and Faust 1994).

Definition 3.7: Let G 2 GUC and let LGðti ; jÞ be the local information graph
of G, for each vertex ti 2 V . We define f CðtiÞ as

f CðtiÞ :¼ aa1b
LG ðti ;1ÞðtiÞþa2b

LG ðti ;2ÞðtiÞþ���þaqðGÞbLG ðti ;qðGÞÞ ðtiÞ;
b � 1; ak > 0; 1 � k � qðGÞ; a > 0:

ð15Þ

b is an arbitrary vertex centrality measure and ak are real positive
coefficients.

We notice that the notation bLG ðti ;jÞðtiÞ expresses we apply b to ti regard-
ing LGðti; jÞ. Finally, by incorporating the defined information functionals,
we obtain families of entropic graph measures, i.e.,

If V ðGÞ :¼ �
XjV j

i¼1

f V ðtiÞPjV j
j¼1 f

V ðtjÞ
log

f V ðtiÞPjV j
j¼1 f

V ðtjÞ

0
@

1
A; ð16Þ

If P ðGÞ :¼ �
XjV j

i¼1

f P ðtiÞPjV j
j¼1 f

P ðtjÞ
log

f P ðtiÞPjV j
j¼1 f

P ðtjÞ

0
@

1
A; ð17Þ
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and

If C ðGÞ :¼ �
XjV j

i¼1

f CðtiÞPjV j
j¼1 f

CðtjÞ
log

f CðtiÞPjV j
j¼1 f

CðtjÞ

0
@

1
A: ð18Þ

We remark that these entropy measures depend on the free parameter a
and the coefficients of the just defined information functionals.

Information Functionals: Graph Decompositions
In a previous section, we introduced a method to measure the struc-

tural information content of a graph that is based on a graph decompo-
sition. A generalized tree decomposition is a special kind of a graph
decomposition which results in a set of generalized trees. For comparing
the resulting entropies with those defined in the previous section, we
now introduce further information functionals for generalized trees which
also depend on a free parameter a. Hence, starting from a generalized tree
decomposition of a graph G 2 GUC , we also obtain two families of graph
entropy measures. Finally, starting from example graphs, we compare the
corresponding information contents numerically.

Definition 3.8: Let H be a generalized tree with height h. jVi j and jEi j
denotes the number of vertices and edges on level i; 0 � i � h, respectively.
For each level li, we define the information functionals

f Vl ðliÞ :¼ ajVi j; a > 0; ð19Þ

and

f El ðliÞ :¼ ajEi j; a > 0: ð20Þ

Definition 3.9: Let H be a generalized tree with height h. Then, the entro-
pies I Va ðH Þ and I Ea ðH Þ are defined by

I Va ðH Þ :¼ �
Xh
i¼0

f Vl ðliÞPh
j¼1 f

V
l ðljÞ

log
f Vl ðliÞPh
j¼1 f

V
l ðljÞ

 !
; ð21Þ

and

I Ea ðH Þ :¼ �
Xh
i¼0

f El ðliÞPh
j¼1 f

E
l ðljÞ

log
f El ðliÞPh
j¼1 f

E
l ðljÞ

 !
; ð22Þ

respectively.
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Starting from these definitions, Definition 3.4 can be now rewritten as
follows.

Definition 3.10: Let G 2 GUH and SHG :¼ fH1;H2; . . . ;HjV jg be the associa-
ted set of generalized trees. We obtain,

I V ðGÞ ¼
XjV j

i¼1

I Va ðHiÞ; ð23Þ

and

I EðGÞ ¼
XjV j

i¼1

I Ea ðHiÞ: ð24Þ

Complexity Analysis

InDehmer (2008a), we have already analyzed the time complexities for cal-
culating the entropies If V ðGÞ; If P ðGÞ, and If C ðGÞ. The result of this analysis can
be summarized by expressing the following theorem (Dehmer 2008a).

Theorem 3.2: For a graph G 2 GUC, the time complexity to compute the entropies
If V ðGÞ; If P ðGÞ, and If C ðGÞ is OðjV j3Þ.

For the complexity analysis of the presented graph entropy approach
which is based on the generalized tree decomposition, we see that we finally
obtain a similar result. First, we get the following.

Proposition 3.3: The time complexity for decomposing a graph G 2 GUC by using
Algorithm 3.1 is OðjV j3Þ:

Proof: Starting from the definition of Algorithm 3.1, we have to compute
all shortest paths in G. This can be done by determining all j-spheres, for
all vertices ti 2 V . For computing all shortest distances, we can apply an
existing shortest path algorithm, e.g., DIJKSTRA’s algorithm (Dijkstra 1959)
jV j times for each vertex as a starting point. This procedure (Cormen,
Leiserson, and Rivest 1990) requires time complexity OðjV j3Þ.

Proposition 3.4: The computation of the entropies I Va ðHiÞ and I Ea ðHiÞ for all
generalized trees Hi of S

H
G requires OðPjV j

i¼1 jVHi j2Þ.

Proof: The creation and parsing process of the adjacency matrix of
a generalized tree Hi requires OðjVHi j2Þ where VHi denotes the vertex
set of Hi .
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It holds jSHG j ¼ jV j. This implies that performing this task jV j times
leads to

XjV j

i¼1

OðjVHi j2Þ ¼ O
XjV j

i¼1

jVHi j2
 !

:

By combining the obtained results, we get a statement for the overall com-
putational complexity to calculate the structural information content of
G 2 GUC , based on Algorithm 3.1.

Theorem 3.5: The overall time complexity to calculate I V ðGÞ and I EðGÞ is
finally OðjV j3 þPjV j

i¼1 jVHi
j2Þ.

Numerical Results

The aim of this section is to interpret the numerical results for compar-
ing the resulting information contents by using certain example graphs.
Starting from the graphs depicted in Figure 7, we calculated the structural
information contents If V ðGiÞ and I V ðGiÞ. To compute If V ðGiÞ, we determ-
ined the corresponding j-spheres for all graphs and chose the ck values such
that c1 :¼ 1; c2 :¼ 2; c3 :¼ 3; c4 :¼ 4. In contrast, for calculating the entropies
If V ðGiÞ, we first decomposed all graphs that aimed to obtain their associated
generalized tree sets SH

G1
; SHG2

, and SH
G3
. After determining the entropies

I Va ðHiÞ, we finally used Definition 3.10 to calculate the structural infor-
mation contents for Gi. The plotted information contents If V ðGiÞ and
I V ðGiÞ in dependence of the free parameter a are shown in Figure 8.

For interpreting these numerical results, we first consider the infor-
mation contents If V ðGiÞ. We start with the observation that If V ðG2Þ is almost
everywhere larger than If V ðG1Þ. Further, we see that If V ðG3Þ is constant and
equals maximum entropy of a graph with five vertices. We notice that by
incorporating the information functional fV to determine Equation (16),
it has been generally proven that the complete graph KjV j has always
maximum entropy (Dehmer 2007b). We now interpret these results in such
a way that we consider the graph G3 as structurally more complex than G2

and G2 more complex than G1. Starting from the definition of fV, this
interpretation can be explained by the fact that a stronger branching of

FIGURE 7 Example graphs Gi 2 GUH ; i ¼ 1; 2; 3.
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a graph leads to larger values of the cardinalities of the corresponding
j-spheres. Our results are in agreement with a statement of Bonchev
(2003), that a complete graph should be considered as structurally com-
plex than other graphs with the same number of vertices, e.g., chain or star
graphs. In order to discuss the results by using Definitions 3.8 and 3.10,
we see in Figure 8 that the resulting information contents now appear in
reverse order, compared to those previously mentioned. By using the
entropy definition that is based on a generalized tree decomposition, we
now find that IV(G1) is everywhere larger than IV (G2) and IV (G2) is every-
where larger than IV (G3). This result can be understood by recalling
Definitions 3.8 and 3.10 and examining the resulting decompositions
SH
G1
; SHG2

, and SHG3
. In particular, we found that two generalized trees of SHG1

possess maximum entropy. Further, the vertex distribution of the resulting
generalized tree set of G2 is less homogeneous as in the case of G1. The fact
why I V ðG2Þ is everywhere larger than I V ðG3Þ can be similarly explained by
examining the decompositions SH

G2
and SHG3

. Finally, we conclude from the
obtained results that the structural information content of a graph can
obviously not be consistently defined. The behavior of such an entropic
measure clearly depends on the underlying definition and specific problem
that needs to be examined.

FIGURE 8 Structural information contents of G1;G2 and G3.
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SUMMARY

This article dealt with information-theoretic concepts for analyzing
complex networks. In the first two sections, we gave a short overview about
the topic. Then, we reviewed some known approaches to determine the
structural information content of networks in biology, mathematical chem-
istry, and psychology. As an important remark, the so-called structural infor-
mation content of a network was defined and interpreted as the resulting
entropy of the underlying network topology. As a major contribution, we
introduced a method for determining the structural information content
of graphs that is based on a graph decomposition. Generally, the main idea
of a decomposition method is to reduce the complexity of the given prob-
lem by decomposing the object under consideration into smaller parts
which can be hopefully processed more properly. In detail, we decomposed
an undirected and connected graph into so-called generalized trees to find
naturally given vertex partitions. Starting from the resulting generalized
tree sets, we expressed two methods to determine the structural infor-
mation content of an undirected and connected graph. For comparing
these entropy measures with those of the section entitled Entropic Mea-
sures Based on Information Functionals, we also defined a parametric
version of the entropy measure that is based on the generalized tree
decomposition. The numerical results by using some example graphs
can be found in the section entitled Numerical Results. As an impor-
tant result, we found that the computational complexity of the graph
entropy approach based on the shown graph decomposition method is
polynomial.
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