
Discrete Mathematics 309 (2009) 2745–2748

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Properties of connected graphs having minimum degree distance
Ioan Tomescu
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania

a r t i c l e i n f o

Article history:
Received 3 January 2008
Received in revised form 23 June 2008
Accepted 24 June 2008
Available online 26 July 2008

Keywords:
Degree distance
Diameter
Eccentricity
Graph join

a b s t r a c t

The degree distance of a connected graph, introduced byDobrynin, Kochetova andGutman,
has been studied inmathematical chemistry. In this paper someproperties of graphs having
minimum degree distance in the class of connected graphs of order n and size m ≥ n − 1
are deduced. It is shown that any such graph G has no induced subgraph isomorphic to P4,
contains a vertex z of degree n− 1 such that G− z has at most one connected component
C such that |C | ≥ 2 and C has properties similar to those of G.
For any fixed k such that k = 0, 1 or k ≥ 3, ifm = n+k and n ≥ k+3 then the extremal

graph is unique and it is isomorphic to K1 + (K1,k+1 ∪ (n− k− 3)K1).
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G(n,m) be the set of connected simple graphs of order n and size m
(
n− 1 ≤ m ≤

( n
2

))
. For a graph G ∈ G(n,m)

the distance d(x, y) between two vertices x, y ∈ V (G) is the length of a shortest path between them and the diameter of G,
denoted by diam(G), is maxx,y∈V (G) d(x, y). The eccentricity ecc(x) of a vertex x is ecc(x) = maxy∈V (G) d(x, y). If graphs G and
H are isomorphic we denote this by G ∼= H . The join G+ H of disjoint graphs G and H is the graph obtained from G ∪ H by
joining each vertex of G to each vertex of H . We shall use the notation D(x) =

∑
y∈V (G) d(x, y) and D(G) =

∑
x∈V (G) D(x).

Note that the Wiener index W (G), a well-known topological index extensively studied in mathematical chemistry,
equals D(G)/2.
In some recent papers Dobrynin and Kochetova [5] and Gutman [6] introduced a new graph invariant defined as follows:

the degree distance of a vertex x, denoted by D′(x), is defined as D′(x) = d(x)D(x), where d(x) is the degree of x and the
degree distance of G, denoted by D′(G), is

D′(G) =
∑
x∈V (G)

D′(x) =
∑
x∈V (G)

d(x)D(x) =
1
2

∑
x,y∈V (G)

d(x, y)(d(x)+ d(y)).

In [9] the author showed that minm≥n−1minG∈G(n,m) D′(G) is reached for a connected graph G of order n if and only if
G ∼= K1,n−1, thus solving a conjecture proposed by Dobrynin and Kochetova [5]. The unicyclic graphs with minimal and
maximal degree distance were determined in [1,7], respectively.
Note that topological indices and graph invariants based on the distances between vertices of a graph are widely used

in mathematical chemistry (see [2–4,8,10]) for the design of so-called quantitative structure–property relations (QSPR) and
quantitative structure–activity relations (QSAR), where by ‘‘property’’ are meant the physico-chemical properties and by
‘‘activity’’, the pharmacological and biological activities of the respective chemical compounds. In this paper we study some
properties of the graphs in G(n,m) having minimum degree distance.
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2. Main results

In what follows we shall exclude the trivial case when m =
( n
2

)
and G ∼= Kn and we can suppose that diam(G) ≥ 2 and

n ≥ 3. Let xi denote the number of vertices of degree i of G ∈ G(n,m) for every 1 ≤ i ≤ n− 1. It follows that
∑n−1
i=1 xi = n

and
∑n−1
i=1 ixi = 2m. If d(v) = k then D(v) ≥ k+ 2(n− k− 1) = 2n− k− 2 and equality holds if and only if ecc(v) ≤ 2. By

defining, as in [9], F(G) = F(x1, . . . , xn−1) =
∑n−1
k=1 kxk(2n− k− 2), we deduce that

D′(G) =
∑
v∈V (G)

d(v)D(v) ≥ F(x1, . . . , xn−1) (1)

and equality holds if and only if diam(G) = 2. We shall prove that all graphs G ∈ G(n,m) having minimum degree distance
contain a vertex v such that ecc(v) = 1, or equivalently d(v) = n− 1, which implies that diam(G) = 2.
Suppose that G ∈ G(n,m), u, v, w ∈ V (G), uv ∈ E(G) but uw 6∈ E(G). Let d(v) = p and d(w) = q. If G1 = G− uv + uw

is connected then G1 ∈ G(n,m) and we get

F(G)− F(G1) = 2(q− p+ 1). (2)

We shall say that G1 is obtained from G by a transformation of type 1. If G ∈ G(n,m) and there exist four distinct vertices
u, v, x, y such that uv ∈ E(G), xy 6∈ E(G) and G2 = G− uv + xy is connected, then G2 ∈ G(n,m) and we shall say that G2 is
deduced from G by a transformation of type 2. Let d(u) = p, d(v) = q, d(x) = r and d(y) = s. We deduce that

F(G)− F(G2) = 2(r + s− p− q+ 2). (3)

Theorem 2.1. Let G ∈ G(n,m) be an extremal graphwithminimumdegree distance. Then G has no induced subgraph isomorphic
to P4 and possesses the following property, denoted by (P): G contains a vertex z of degree |V (G)| − 1, G − z has at most one
connected component C such that |C | ≥ 2 and the subgraph induced by C also possesses property (P).

Proof. Let G ∈ G(n,m) be a graph with minimum degree distance and z be a vertex of maximum degree of G. Suppose that
d(z) < n−1. Let u1, . . . , ur (r ≥ 1) be the vertices nonadjacent to z. Since G is connected, there exist an index i1, 1 ≤ i1 ≤ r ,
and y1 ∈ N(z) such that ui1y1 ∈ E(G). The graph G1 = G − ui1y1 + zui1 obtained from G by a transformation of type 1
is connected and by (2) F(G) − F(G1) = 2(dG(z) − dG(y1) + 1) > 0. Vertex z also has maximum degree in G1 and there
exist another index i2, 1 ≤ i2 ≤ r , and y2 ∈ NG1(z) such that ui2y2 ∈ E(G1). By denoting G2 = G1 − ui2y2 + zui2 we get
F(G1) > F(G2). In this way we obtain a sequence of graphs G1, . . . ,Gr ∈ G(n,m) such that F(G) > F(G1) > · · · > F(Gr)
and dGr (z) = n− 1. This implies that diam(Gr) = 2; hence F(Gr) = D

′(Gr). It follows that D′(G) ≥ F(G) > F(Gr) = D′(Gr),
which contradicts the hypothesis that D′(G) is minimum for all graphs in G(n,m). Hence dG(z) = n− 1. Let us observe that
dG−z(v) = dG(v) − 1 for every vertex v ∈ V (G) \ {z} and in order to apply transformations of type 1 or 2 to G − z we can
consider that in (2) and (3) p, q, r, s are the degrees of v,w and u, v, x, y, respectively, in the subgraph G − z. Also, since z
is adjacent to all vertices of G− z then the resulting graphs G1 and G2 are always connected if u, v, w, x, y 6= z.
Suppose that G− z has at least two components C1 and C2 such that min(|C1|, |C2|) ≥ 2. It follows that there exist four

distinct vertices x1, y1 ∈ C1 and u1, v1 ∈ C2 such that x1y1, u1v1 ∈ E(G) and x1v1, y1u1 6∈ E(G). Let G1 = G − x1y1 + x1v1.
Because both G and G1 have diameter equal to 2 it follows that D′(G) = F(G) and D′(G1) = F(G1). The minimality of D′(G)
implies by (2) that dG(y1) ≥ dG(v1) + 1. By considering the graph G − u1v1 + y1u1 one obtains dG(v1) ≥ dG(y1) + 1, a
contradiction.
If Gwere to contain an induced P4: u, v, w, t , then uw, vt 6∈ E(G) and in the samewaywe deduce that dG(v) ≥ dG(w)+1

(relatively to u) and dG(w) ≥ dG(v)+1 (relatively to t), a contradiction. By the same reasoning as above we deduce that the
subgraph induced by C possesses property (P). �

This theorem enables us to find easily some extremal sparse graphs in G(n,m).

Corollary 2.2. If G ∈ G(n,m) has minimum degree distance then:

(a) for m = n− 1 and n ≥ 2, G ∼= K1,n−1;
(b) for m = n and n ≥ 3, G ∼= K1 + (K2 ∪ (n− 3)K1);
(c) for m = n+ 1 and n ≥ 4, G ∼= K1 + (K1,2 ∪ (n− 4)K1);
(d) for m = n+ 2: G ∼= K4 for n = 4 and G ∼= K1 + (K3 ∪ (n− 4)K1) or G ∼= K1 + (K1,3 ∪ (n− 5)K1) for n ≥ 5;
(e) for m = n+ 3: G ∼= K1 + (K1 + (K1 ∪ K2)) for n = 5 and G ∼= K1 + (K1,4 ∪ (n− 6)K1) for n ≥ 6;
(f) for m = n + 4: G ∼= K1 + (K1 + K1,2) for n = 5;G ∼= K1 + (K1 ∪ (K1 + K1,2)) or G ∼= K1 + (K1 + (K2 ∪ 2K1)) for
n = 6;G ∼= K1 + (K1,5 ∪ (n− 7)K1) for n ≥ 7.

Proof. If G ∈ G(n,m) has minimum degree distance then by Theorem 2.1 there exists a vertex z having d(z) = n − 1 and
G − z has at most one component C with |C | = r ≥ 2. It follows that r − 1 ≤ m − n + 1 ≤

( r
2

)
and n ≥ r + 1. Also, in

C there exists a vertex x such that dC (x) = r − 1 and C − x has at most one component containing at least two vertices. In
view of this, cases (a)–(c) are immediate.
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(d) We have r = 3 or r = 4. If r = 3 then n ≥ 4. If n = 4 then G ∼= K4. Otherwise n ≥ 5 and x is adjacent to u and v
in C and uv ∈ E(G). The resulting graph, denoted by G1, is isomorphic to K1 + (K3 ∪ (n− 4)K1). If r = 4 then n ≥ 5 and C
induces a subgraph isomorphic to K1,3; the resulting graph, denoted by G2, is isomorphic to K1 + (K1,3 ∪ (n− 5)K1). For G1,
let y stand for a vertex of degree 1. We have d(u) + d(v) = d(x) + d(y) + 2 = 6; hence by a transformation of type 2, G1
goes into G2 such that D′(G1) = D′(G2) by (3). In this case there exist two extremal graphs.
(e) In this case r = 4 or r = 5. If r = 4 we have n ≥ 5; in C x is adjacent to u, v, w and uv ∈ E(G); the resulting graph

G3 ∼= K1+ ((K1+ (K1∪K2))∪ (n−5)K1). If r = 5, n ≥ 6 and the resulting graph G4 ∼= K1+ (K1,4∪ (n−6)K1). If y stands for
a vertex of degree 1 in G3 for n ≥ 6, we get 6 = d(u)+ d(v) < d(x)+ d(y)+ 2 = 7; hence by (3) we have D′(G4) < D′(G3)
and the extremal graph coincides with G4 for every n ≥ 6. The case (f) can be treated in a similar way. �

The number of extremal graphsmay be even greater than 2. For example, for n = 7 andm = 13 there exist three extremal
graphs: K1 + (K1 + (K1,2 ∪ 2K1)), K1 + (K1 ∪ (K1 + K1,3)) and K1 + (K1 ∪ (K1 + (K3 ∪ K1))). A case when the extremal graph
is unique is given by the next theorem.

Theorem 2.3. Let k ≥ 3 be a fixed natural number, m = n + k and n ≥ k + 3. If G ∈ G(n,m) has minimum degree distance
then G ∼= K1 + (K1,k+1 ∪ (n− k− 3)K1).

Proof. Let G ∈ G(n, n+ k) where n ≥ k+ 3 having minimum degree distance and z ∈ V (G) such that d(z) = n− 1. Then
G− z has k+ 1 edges, n− 1 ≥ k+ 2 vertices, one component C such that |C | = r ≥ 2 and n− 1− r isolated vertices. Since
r − 1 ≤ k+ 1 ≤

( r
2

)
it follows that r ≤ k+ 2 and k ≥ 3 implies r ≥ 4.

If r = k + 2 then C induces a subgraph isomorphic to K1,k+1 and in this case G ∼= K1 + (K1,k+1 ∪ (n − k − 3)K1). We
will show that this is the unique case when G has minimum degree distance. If r = k + 1 then C induces the subgraph
K1 + (K2 ∪ (k − 2)K1), consisting of a vertex x adjacent to the remaining k vertices of C . Also, there exist two adjacent
vertices u, v in C adjacent to x and let y be a vertex adjacent only to z in G. Let G1 stand for the graph in G(n, n+ k) deduced
in this way. We have 6 = d(u) + d(v) < d(x) + d(y) + 2 = k + 4; hence by a transformation of type 2, G1 goes to
K1 + (K1,k+1 ∪ (n− k− 3)K1) and its degree distance decreases strictly by (3).
Now let r ≤ k. Define r − 1 = q ≤ k− 1 and p = k+ 1− q ≥ 2. Since r ≥ 4 it follows that q ≥ 3. We deduce that G− z

has a component C with q+1 vertices and n−1− r = n−k+p−3 isolated vertices. Furthermore, there exists a vertex x in
C adjacent to other q vertices of C . We shall prove that all graphs deduced in this way have a degree distance strictly greater
than that of the graph obtained when r = k+ 2. The graph K1 + (K1,k+1 ∪ (n− k− 3)K1) has parameters x1 = n− k− 3,
x2 = p+ q, xp+q+1 = 1 and xn−1 = 1. We denote the corresponding parameters for G by x′i for 1 ≤ i ≤ n− 1 and i 6= q+ 1.
For i = q + 1, x′q+1 stands for the number of vertices of G of degree q + 1 different from x. We have x

′

1 = n − k − 3 + p,
x′q+2 = · · · = x

′

n−2 = 0, x
′

n−1 = 1 and x has degree q+ 1. We get F(K1 + (K1,k+1 ∪ (n− k− 3)K1))− F(G) = 2(p+ q)(2n−
4)+(p+q+1)(2n−p−q−3)−p(2n−3)−(q+1)(2n−q−3)−

∑q+1
k=2 kx

′

k(2n−k−2) = −5p−4q−p
2
−2pq+

∑q+1
k=2 k

2x′k
since

∑q+1
k=2 kx

′

k = 2(p+ q). We shall prove that

q+1∑
k=2

k2x′k < p
2
+ 2pq+ 5p+ 4q, (4)

where

q+1∑
k=2

x′k = q and
q+1∑
k=2

kx′k = 2p+ 2q. (5)

In order to find themaximumofH(x′2, . . . , x
′

q+1) =
∑q+1
i=2 i

2x′i where (x
′

2, . . . , x
′

q+1) satisfies (5), suppose that 3 ≤ s < t ≤ q,
x′s ≥ 1, x

′
t ≥ 1 and define ys−1 = x

′

s−1 + 1, ys = x
′
s − 1, yt = x

′
t − 1, yt+1 = x

′

t+1 + 1 and yi = x
′

i for every 2 ≤ i ≤ q + 1,
i 6= s− 1, s, t, t + 1. The system of values (y2, . . . , yq+1) satisfies conditions (5) and

H(x′2, . . . , x
′

q+1)− H(y2, . . . , yq+1) = 2(s− t − 1) < 0.

If there exists s, 3 ≤ s ≤ q, such that x′s ≥ 2 we shall define ys−1 = x
′

s−1 + 1, ys = x
′
s − 2, ys+1 = x

′

s+1 + 1 and yi = x
′

i for
every 2 ≤ i ≤ q+ 1, i 6= s− 1, s, s+ 1. (y2, . . . , yq+1) satisfies (5) and

H(x′2, . . . , x
′

q+1)− H(y2, . . . , yq+1) = −2.

It follows that the maximum of H(x′2, . . . , x
′

q+1) is reached when: A. x
′

3 = · · · = x
′
q = 0; or B. There exists an index α,

3 ≤ α ≤ q, such that x′α = 1 and x
′

i = 0 for every 3 ≤ i ≤ q and i 6= α.
For the case A, from (5) we deduce x′2 = q− 2p/(q− 1) and x

′

q+1 = 2p/(q− 1). It follows that

H(x′2, . . . , x
′

q+1) ≤ 4(q−
2p
q− 1

)+ (q+ 1)2
2p
q− 1

= 4q+ 2p(q+ 3);

H(x′2, . . . , x
′

p+1)− p
2
− 2pq− 5p− 4q ≤ p− p2 < 0.
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For the case B, x′2 = q− 1− (2p+ α + 2)/(q− 1), x
′
α = 1 and x

′

q+1 = (2p− α + 2)/(q− 1). It follows that

H(x′2, . . . , x
′

q+1) ≤ 4(q− 1−
2p− α + 2
q− 1

)+ (q+ 1)2
2p− α + 2
q− 1

+ α2

= 6q+ 6p+ 2pq− αq+ α2 − 3α + 2;

H(x′2, . . . , x
′

q+1)− p
2
− 2pq− 5p− 4q ≤ (α − 2)(α − 1− q)+ p− p2 < 0.

Since (4) holds it follows that the graph G ∈ G(n, n + k) having D′(G) minimum is unique and it is isomorphic to
K1 + (K1,k+1 ∪ (n− k− 3)K1). �

Note that by Corollary 2.2 under the conditions of Theorem 2.3 the extremal graph is unique even for k = 0 or k = 1, but
for k = 2 there exist two extremal graphs.
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