DNA Cloning Strategies

RossMcManus Institute of Molecular Medicine, TCD DMMC

What is Cloning?

- Process by which a single individual is replicated to give rise to many essentially <u>identical</u> individuals
- Clone: A group of essentially identical individuals at the genetic level, derived from a single progenitor
 - Asexual Reproduction
 - DNA molecules, Viruses,
 Bacteria, Higher Organisms

Cloning - General Principles

Cloning - General Principles

• <u>Essentially</u> Identical – No Recombination, But Mutation will Occur

DNA Cloning

• Rationale:

- Massive amplification of DNA sequences
- Stable propagation of DNA sequences
- A single DNA molecule can be amplified allowing it to be
 - Studied Sequenced
 - Manipulated Mutagenised or Engineered
 - Expressed Generation of Protein

Whats it used for?

- Manipulating DNA sequences
 - Transgenic or knockout animals
 - Genetically Modified
 Organisms
 - Protein expression
 - Vaccines
 - Biologicals infliximab
 - DNA perpetuation and analysis

Maturity-onset obesity in transgenic mice expressing CMV-ADAR2 medschool1.mc.vanderbilt.edu/

Cloning Strategy

• **Strategy** depends on the starting information and desired endpoint.

• Starting Information or Resources:

- Positional cloning information
- Protein sequence
- mRNA species / sequence
 - cDNA libraries
 - Subtractive hybridisation / genechip
- DNA sequence known or unknown
 - genomic DNA libraries

Positional Cloning: BRCA2

Wooster et al., 1994. Science 265: 2088-2090

Methodology

- Ability to cut, modify and rejoin DNA sequences
 - Restriction enzymes
 - Specifically recognise and cleave DNA sequences
 - DNA Polymerases
 - Klenow, Taq, Vent
 - In vitro generation of DNA
 - Phosphatases, Kinases
 - Removal and addition of Phosphates
 - Ligases, Topoisomerases
 - Reseal phosphodiester bonds

Methodology

- Ability to identify DNA sequences
 - Sequencing
 - Hybridisation
 - Antibody detection

- Ability to propagate DNA
 - Cloning vectors (many varieties)
 - PCR
 - Transformation / Transfection of host cells

 Ability to separate DNA fragments

 Electrophoresis

Polyacrylamide

Cloning Vectors: Basic Components

- Plasmids: naturally occurring bacterial 'minichromosomes'
- Vectors: Engineered derivatives of plasmids used for cloning

Origin of replication (Ori)

- ColE1, p15a plasmids (copy number 1 >50)
- f1, M13 filamentous phage
- Eukaryotic- SV40

Mechanism of plasmid selection

- Bacterial Cells:
 - Ampicillian
 - Chloramphenicol
 - Kanamycin
 - Tetracycline
- Eukaryotic Cells:
 - Neomycin
 - G418

Cell wall synthesis 50S ribosomal S/U Inhibits translocation AA-tRNA / ribosome binding

Cloning Vectors: Basic Components

- Multiple cloning site (MCS)
 - Selection of unique restriction enzyme sites
- Mechanism of insert detection
 - LacZ α peptide (blue / white colour)
 - Antibiotic inactivation
- Other features
 - T7 / SP6 promoters (? bidirectional)
 - Turning on and off expression in vivo (Tet on / off)
 - Sequencing primer binding sites (M13, T7)

pBR322

pGEM

Cloning Vectors: Specialised features

- Specialised vectors exist to perform different functions
- Expression
 - Expression cassettes protein expression;
 - Require promoter, initiation & termination codons, RBS (Kozak,polyA tail [3'UTR])
 - Fusion proteins purification systems his tag, GST, Maltose bp

Reporter genes

- analysing promoters, enhancers, translational processes

Sequencing

Production of ssDNA

Cloning Vectors: more **Specialised features**

- Cloning (large scale)
 - High efficiency transfer: Lambda, P1
 - Large insert size: PAC, BAC, YAC, HAC
- Mutagenesis
 - Sequential alterations depend on strand selection
- Combination vectors
 - Shuttle vectors
 - Cosmids
 - Phagemids

Bacteriophage Lambda- λ

Cosmids - Half Plasmid, Half Phage

Restriction Endonucleases

- Discovered early 70's
- Allows DNA to be cut specifically and reproducibly

- Loads of enzymes with different site specificities
 - Flexibility in cloning
 - Incorporation of sites during PCR
- Allowed first detailed genetic mapping – RFLPs (SNPs)
- Vector construction

Cloning: Applications

- Cloning DNA fragments
- Generating Libraries
 - Essential step for Genome Mapping
 - Shotgun Cloning
- Positional cloning
 - Discovering Disease Genes
- Discovering genes from e.g. Protein sequence
- Fusion proteins GFP
- Gene regulation Luciferase reporters

H Windle, D Kelleher, R McManus

Libraries _{II}

- Efficiency of reaction
 - important since all of the genome needs to be cloned
- E.coli 4,600,000 base pairs
 - 4600/8 = 575 independent, non-overlapping clones of 8 kb required to cover entire genome
- In practice many more required to cover breakpoints and provide redundancy

Screening

- Must be able to screen a library for recombinants to detect gene or sequence of interest
 - **Probe** e.g. labelled DNA sequence
 - This will hydrogen bond (hybridise) with similar sequences in library
- Clones derived from transformation of host cell must be screened in order to detect sequences of interest.
 - Plaque hybridisation
 - Colony hybridisation
 - Antibody screening

cDNA library

- Isolate mRNA
- Reverse transcribe mRNA into cDNA
- Insert cDNA into vector of choice

 Amplify library
- Screen for sequence of interest using a known DNA probe (hybridisation)
 - Find related sequences
- Screen for differentially expressed mRNAs (or deleted DNA)
 - Subtractive hybridisation

GATEWAY cloning System

pcDNA/GW/ D-TOPO® Vectors

Sources of Clones

- NEDO (Japan)
 >18,500
- MGC (mammalian gene collection: US) – >10,000
- DKFZ (Germany)
 - ->10,000
- Full length and coding region only available
 - (Gateway & similar vectors)

Commercial Sources

- IMAGE consortium
- Genecopia ORF express
- Invitrogen Ultimate ORF collection
- Open Biosystems Freedom ORF collection / Incyte gene collection
- Origene True clone collection
- RZPD Full ORF shuttle