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Elements of Statistics

Chapter 9 

Elements  of  statistics


The design of molecular structures with desired physico-chemical or biological properties is the major target of the molecular topology. An insight of a set of molecules could reveal the crucial factors involved in the structure-property relationship.


This is performed by the aid of some molecular descriptors (e.g., topological indices) and/or the regression analysis, within various models (i.e., algorithms). The results of this analysis have a diagnostic meaning (e.g., the partitioning of a molecular property into fragmental contributions to a computed global property) and a prognostic one (e.g., the estimation of a molecular property from some fragmental mathematical or physico-chemical properties). The topological characterization of the chemical structures allows their classification according to some similarity criteria. The regression analysis is based on some basic statistics.
9.1.  Elementary  Concepts


Elementary statistical concepts providing the necessary foundations1 for more specific expertise in any area of statistical data analysis are briefly discussed. 


Because of space limitations, the reader is invited to consult more detailed textbooks.2-5

9.1.1 Mean values

Let X be a string of n values X1, X2, …, Xn. The following main indicators are most used:

Arithmetic mean AM(X) is the number calculated by:
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Geometric mean GM(X) is obtained by:
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     (9.2)
Note that for n = 2k, k integer, the expression for GM can be indeterminate if the product (Xi is negative. 

Harmonic mean HM(X ) is the number given by:
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Eulerian Mean EM(X) is calculated as:
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Median value m(X) is the number given by: 
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     (9.5)

9.1.2. Indicators of Spreading

Hereafter, M(X) denotes any mean value (9.1-9.5).

Dispersion D is the number given by:


DM(X) = EM(X - M(X))






     (9.6)

and is a measure of spreading of X values around the mean value M(X). The subscript M is the label for the type of mean around the statistical indicator considered. If the label is missing, the arithmetic mean AM is assumed.

Standard deviation s is the number calculated as:


sM(X) = 
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Absolute mean deviation am is the quantity:


amM(X) = AM(abs(X - M(X)))





     (9.8)

It is called variance (s2, am2, D2) the square of any deviation (s, am, D). 

9.2.  Correlations

Correlation is a measure of the relation between two or more variables. The correlation coefficient is a measure of linear dependencies of two or more series of data and is not dependent on the measurement scales of series.6 Correlation coefficients range from -1.00 to +1.00. The value of -1.00 or +1.00 represents a perfect linear correlation while a value of 0.00 represents a lack of linear correlation.


The most widely used correlation coefficient is that of Pearson, r, also called linear or product-moment correlation.7

9.2.1. Pearson Correlation, r 


Let X and Y be two series of data. 

The quantity defined by: 
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is called the second degree moment or covariance or correlation of the two data through the numeric series before considered. 

The Pearson correlation coefficient, r is given by:



[image: image8.wmf])

,

(

)

,

(

)

,

(

)

,

(

Y

Y

X

X

Y

X

Y

X

r

m

m

m

×

=







   (9.10)

The quantity ((X, X) provides the same values as the square dispersion of X:


D2(X) = 
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Among all these quantities, the correlation coefficient is more often used for the statistical characterization of the correlation between two series of data. 


The higher is ((X, Y) the greater is the functional dependence between X and Y, and r becomes higher too. When r = 1 the correlation reaches the maximum, and X and Y become directly proportional. 


The smaller is ((X, Y), the stronger is the functional dependence between X and Y, but this time Y decreases with increasing X. When r = -1, the correlation is at the minimum value, X and Y are changing in an inversely proportional manner. The above relations are true, of course, for a linear correlation.

9.2.2. Rank Correlation. Spearman ( and Kendall ( 


The rank correlation is used especially when the series of inputs do not have rigorous values, being affected by systematic errors. In such a case, the only useful parameter is the position of measurement in the ordered string (file) of these ones.

We now introduce the notion of rank: the rank is the position of a measured value in the string of  the measured values ordered in an increasing manner. Consider the series X1, X2, . . . ,Xn and the permutation


(:{1,...,n}( {1,..., n}:  
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that put into increasing order the measurements, namely the rank of Xi is
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Let be the series X1, X2, . . . , Xn and Y1, Y2, . . . , Yn and (according to 9.12) (1, (2 permutations that put in order X and Y, respectively:
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and let be  
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If d = 0 then the considered series are on the same order and there is a perfect correspondence of ranks.

Taking into account that: 
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the Spearman correlation coefficient ( (correlation of rank), is obtained by performing the Pearson r calculations for (1 and (2 variables:
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Detailed discussions upon the Spearman ( statistic can be found in refs.4,8-10


In order to define the Kendall correlation coefficient we need to introduce the functions K1 and K2 according to:
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that is the number of ranks in Y smaller than the rank i from Y and in the series of X the ranks from 1 to i ;   
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that is the number of ranks from Y larger than the rank i from Y and in the series of X, the ranks from 1 to i. The quantities:


Pi = 1-(2(i)+K1(i);   Qi = n - (2(i) -K2(i);   Si = Pi + Qi ;   
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once calculated, the Kendall correlation coefficient ( is obtained as:
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Note that: (i)  k = 1 when both series are in the same order (1 = (2; (ii) k = -1 when both series are in the opposite order 
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. The rank correlation is successfully used at Genetic Programming.11,12


Kendall ( and Spearman ( statistics are comparable in terms of their statistical power.  However, the two statistics are usually not identical in magnitude because their underlying logic, as well as their computational formulas are very different. Siegel and Castellan13 express the relationship of the two measures in terms of the inequality:


-1 ( 3(( - 2(( ( 1






   (9.21)


More importantly, they imply different interpretations: While Spearman ( can be thought as the regular Pearson product-moment correlation coefficient as computed from ranks, Kendall ( rather represents a probability. Specifically, it is the difference between the probability that the observed data are in the same order for the two variable vs the probability that the observed data are in different orders for the two variables. For details see the refs. 13-15

9.2.3. Correlations in Non-Homogeneous Groups


A lack of homogeneity in the sample from which a correlation was calculated can be another factor that biases the value of the correlation.  Imagine a case where a correlation coefficient is calculated from data points coming from two different experimental groups but this fact is ignored when the correlation is calculated.  Let us assume that the experimental manipulation in one of the groups increased the values of both correlated variables and thus the data from each group form a distinctive cluster in the scatterplot.


In such cases, a high correlation may result that is entirely due to the arrangement of the two groups, but which does not represent the true relation between the two variables. If you suspect the influence of such a phenomenon on your correlations and know how to identify such subsets of data, try to run the correlations separately in each subset of observations.

9.3.  Regression  Models

          Regardless of their type, two or more variables are related if in a sample of observations the values of those variables are distributed in a consistent manner.  In other words, variables are related if their values systematically correspond to each other for these observations.

         The general purpose of multiple regression (the term was first used by Pearson,16 1908) is to learn more about the relationship between several independent (or predictor) variables and a dependent (or criterion) variable.

         In general, multiple regression allows the researcher to ask (and hopefully answer) the general question what is the best predictor of ....

         The most frequently used multiple regression is multiple linear regression because this type of regression offers maximum capability in prediction.17 First of all, it is assumed that the relationship between variables is linear. In practice this assumption can virtually never be confirmed; fortunately, multiple regression procedures are not greatly affected by minor deviations from the linearity. However, it is prudent to always look at bivariate scatterplot of the variables of interest. If curvature in the relationships is evident, one may consider either transforming the variables, or explicitly allowing for nonlinear components. 

        Once this so-called regression line has been determined, the analyst can now easily construct a graph of the expected (predicted) values and the actual values of dependent variable.  Thus, the researcher is able to determine which position is below the regression line, above the regression line, or at the regression line.

9.3.1 Loss Function in Regression Models

        The loss function (the term loss was first used by Wald18  in 1939) is the function that is minimized in the process of fitting a model, and it represents a selected measure of the discrepancy between the observed data and data predicted by the fitted function.

        For example, in many traditional linear model techniques, the loss function (commonly known as least squares) is the sum of squared deviations from the fitted line.  One of the properties of that common loss function is that it is very sensitive to outliers.

A common alternative to the least squares loss function is to maximize the likelihood or log-likelihood function.
        Let Y be a string of measured data and Ŷ a string of predicted Y values. The loss function is of the form:

        loss(Y,Ŷ) = 
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where f  is a positive function (f : ( ( (+). 

Model parameters are determined by minimizing the loss function


loss(Y, Ŷ ) = min.






   (9.23)

Minimization of Risk. Least Squares Method


A well known estimation model for parameters is based19 on the minimization of risk defined as mean of square loss function, (promoted by Kolmogorov20) best known as the least squares method. Expression of loss function is


f(z) = z2








   (9.24)


Many papers21-23 have described different approaches of the estimation model based on the loss function. Most used are presented in the following:

Fisher24 introduced the maximum likelihood method given by25



f(z) = 
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Newman and Waad proposed the minimax method given by a function 


f(z) = |z|







   (9.26)

Bayes (1750), was first that introduced maximum aposteriory probability method by


f(z) = 
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where D is the dispersion (see eqs 9.6, 9.11).


In many variants of the least squares, weighted loss functions are used


f1(z) = w(f(z)







   (9.28)

where w is a weight dependent on values of dependent variable Y, independent variable(s) X or predicted variable Ŷ.


A widely used weighted function is (see ref.26  p. 168)


loss = loss(Y, Ŷ, X) = 
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This method will yield more stable estimates of the regression parameters (for more details, see26).


An interesting model is obtained if expression of regression model is written in implicit form


g(Y, Ŷ) = (







   (9.30)

when the loss function becomes


loss(Y, Ŷ) = 
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This kind of model is useful when both the predicted variable and the predictor variable are affected by measurement errors.27

9.3.2. Simple Linear Model


Let X be an independent variable and Y a dependent variable (Y = Y(X)). The linear model assumes that X and Y are linked in a dependence of the form


Ŷ = b0 + b1X;    Y = Ŷ + (





   (9.32)

where ( is the residue of the estimate of Y. 


The loss function for the model is defined as in eq 9.24-9.28. The parameters b1 and b0 are determined by eq 9.23. 


For the most of the cases, the loss function is the minimization of risk and the values for parameters are:


b1 = 
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9.3.3. Multiple Linear Model


Let Y be a dependent variable, and independent variables X1, …, Xp where p < n, n being the number of experiments (Y1, Y2, …, Yn). The model for multiple linear regression is


Ŷ = b0 + b1 X 1 + b2 X 2 + … + bp X p ;    Y = Ŷ + (


   (9.34)

The coefficients can be obtained by applying eqs 9.22- 9.24   (for other cases, see eqs 9.25-9.28) when results a system of linear equations 
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with solution (if exists):


B = CZ-1;    C T = [AM(X kY )]0 ( k ( p  and Z = [AM(X k+i )] 0 ( k,i ( p
   (9.36) 

As a regression power measure the Pearson rp is used:


rp(X1, X2, …,Xp, Y) = r(Ŷ,Y)





   (9.37)

or multiple r, namely rM :
rM(X 1, X 2, …, X p, Y ) = 
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9.3.4. Other Regression Models


In pharmacology, the following model is often used to describe the effects of different dose levels of a drug



[image: image30.wmf]1

)

/

(

1

1

2

0

0

b

b

X

b

b

Y

+

-

=







   (9.39)


In this model, X is the dose level (X ( 1) and Y is the responsiveness, in terms of the percent of maximum possible responsiveness.


The parameter b0 denotes the expected response at the level of dose saturation while b2 is the concentration that produces a half-maximal response; the parameter b1 determines the slope of the function.


For specific problems, non-linear regression models are used.28-32

9.4.  Reduction  to  Linear  Models

According to the concept of linear dependence, a regression equation is linear if the functional dependence between the considered variables can be linearized. Transforming the independent variables can be achieved following the procedures described in ref.33 p. 560. The estimation of the u parameters for this procedure is not iterative in nature, but is accomplished by expanding the terms of the regression model for the transformed predictor variables in a first-order Taylor series. For example, the following regression equations

            Y = a log(X ) + b;  Y = a (1/X ) + b;  Y = a ( eX )+ b;   log(1/Y) = a X + b
   (9.40)

can be linearized and the dependence can be associated with the linear model


Y = a Z + b







   (9.41)

where the new independent variable z is obtained by substitutions27,28


Z = log(X);   Z = 1/X;   Z = eX  or  Z = eY



   (9.42)

We can minimize the residual sums of squares for the regression model, after transforming the dependent variable via Z = Y u ( u ( 0), or, best known Z = log(Y ) (see log P calculations and correlating studies).33,34 Note that this kind of substitutions require that all values of Y be greater than zero.  For details see refs.33,35-37 


Another extension of linear regression model can be obtained when the error factor influences both variables involved in the regression. In this case, the formulas for the validation of regression parameters have different form.27 

9.5.  Factor  Analysis  and  PCA

Thurstone first introduced the term factor analysis.38 The factor analysis is applied in connection with a variant of multiple linear regression, which applies successively the simple linear model to the non-explicated data39


Step 1.
   Ŷ 1 = a1 + b1 X 1;       Y 1 = Y - Ŷ 1 






 
Step 2.
   Ŷ 2 = a2 + b2 X 2;        Y 2 = Y 1 - Ŷ 2 





…

Step p.
  Ŷ p = ap + bpX p;     Y p = Y p-1 – Ŷ p;  ( = Y p
 

   (9.43)

which, in terms of multiple linear regression is:


Step(.   Ŷ p = (a1 + a2 + … + ap) + b1X 1 + b2X 2 + … + bpX p + ( ; 

Y p = Y – Ŷ p 






   (9.44)

Note that this technique of multiple linear regression leaves unchanged the values bi (1 ( i < p). The values bi are invariants at the application of any additional step k ≥ p of regression. This technique is referred to as the Principal Component Analysis PCA.40,41


The main applications of factor analysis techniques is to reduce the number of variables p and to detect structure in the relationships between variables, that to classify variables.42,43 Therefore, factor analysis is applied as a data reduction or structure detection method.44,45 Many excellent books on factor analysis already exist.46-49 The interpretation of secondary factors in hierarchical factor analysis, as an alternative to traditional oblique rotational strategies, is explained in detail in ref.50 At the heart of factor analysis is the problem of regression coefficients bp, evaluated usually via LS (least squares) procedures. In most of the cases, this problem is solved via the Householder method.51-53 

9.6.  Dominant  Component  Analysis,  DCA

It is a variant of linear multiple regression and/or PCA. The method starts with the observation that in regression equations (9.34) and (9.44) the descriptors X1, X2,…, Xp are intercorrelated.


DCA approach proposes a method of orthogonalization of independent variables involved in the regression equation. In this way, a new set of non-correlated descriptors is created. Note that in this type of multi-linear regression the best correlation score makes the selection of the next descriptor from the set of descriptors. The algorithm of DCA is:

Step 1. Make linear regressions:     Ŷ i = ai X i + bi ;   Y i = Y – Ŷ i ;   i = 1, …, p;

Let k1:       r(Y, X k1) = max {r(Y, X i ), i = 1, …, p};


Make 1-variate regressions:     Ŵ i = ai X k1 + bi;    W i = X i – Ŵ i;   i (  k1.
Step 2. Make linear regressions:    Ŷ i = ai  W i + bi ;    Y i = Y k1 – Ŷ i;   i (  k1 ;

            Let k2:       r(Y k1, W k2) = max {r(Y k1,W i ), i (  k1};

Make 2-variate regressions: Ŵ i = ai X k1 + bi X k2 + ci;    W i = X i – Ŵ i ;   

    i (  k1, k2.

Step 3. Make linear regressions:  Ŷ i = ai W i + bi ;    Y i = Y k2 – Ŷ i ;   i (  k1, k2 ;

            Let k3:       r(Y k2,W k3 ) = max {r(Y k2,W i ), i (  k1, k2 };

            Make 3-variate regressions:      Ŵ i = ai X k1 + bi X k2 + ci X k3 ;  

                       W i = X i – Ŵ i ;  i (  k1, k2.


...










   (9.45)
 
The orthogonal descriptors are X k1 (Step 1), W k2 (Step 2), W k3 (Step 3), etc. Coefficients in the regression equation


Y = (1 X k1 + (2 W k2 + (3 W k3 + …




   (9.46)

are obtained through substitutions in the algorithm equations (Step 1, …) or making multiple linear regression (eq  9.46). 


The method was first reported by Randić54 and further in refs.55-57

* *  *


In more general terms, there are three types of multiple regression: standard regression, forward stepwise regression and backward stepwise regression.58,59


In standard regression all variables will be entered into the regression equation in one single step. This is the most frequently used case, which is also described in (9.34-9.36).


In forward stepwise regression the independent variables will be individually added or deleted from the model at each step of the regression, depending on the choice based on the statistical significance of the regression equation, until the best model is obtained. This is the case both in PCA and DCA, also described in eqs 9.43, 9.44 and 9.45, 9.46. 


In backward stepwise regression the independent variables will be removed from the regression equation one at a time, depending on the researcher choice, until the best regression model is obtained. This last procedure is more flexible, it could be made at an equation of the form (9.34-9.36), (9.43, 9.44) and (9.45, 9.46). 


For the cases when the independent variables are highly intercorrelated, and stable estimates for the regression coefficients cannot be obtained via ordinary least squares methods, the ridge regression analysis25,60,61 is used.


[image: image31.wmf]9.7.  Tests  for  Validation


We can test differences between groups (independent samples), differences between variables (dependent samples), and relationships between variables. For regression equations, tests are called significance tests.

9.7.1. Differences Between Independent Groups


Usually, when we have two samples that we want to compare concerning their mean value for some variable of interest, we would use the t-test for independent samples; alternatives for this test are the Wald-Wolfowitz runs test, the Mann-Whitney U test, and the Kolmogorov-Smirnov two-sample test. 

9.7.1.1. The t-Test for Independent Samples


The t-test is the most commonly used method to evaluate the differences in mean values between two groups. Theoretically, the t-test can be used even if the sample size is very small (< 10).


The normality assumption can be evaluated by looking at the distribution of the data or by performing a normality test.  The equality of variances assumption can be verified by the F test, or by using the Levene test. If these conditions are not met, then the differences in means between two groups can be evaluated by using one of the alternatives to the t-test.


The p-level included in t-test represents the probability of error involved in accepting the research hypothesis about the existence of a difference. Technically speaking, this is the probability of error associated with the rejecting of the hypothesis of no difference between the two group populations when, in fact, the hypothesis is true.


Some researchers suggest that if the difference is in the predicted direction, you can consider only one half (one tail) of the probability distribution and thus divide the standard p-level reported with a t-test by two (a two-tailed probability).

9.7.1.2. Wald-Wolfowitz Runs Test


This test assumes that the variable under consideration is continuous, and that it was measured on at least an ordinal scale (i.e., rank order).


The Wald-Wolfowitz runs test assesses the hypothesis that two independent samples were drawn from two populations that differ in some respect, i.e., not just with respect to the mean, but also with respect to the general shape of the distribution. The null hypothesis is that the two samples were drawn from the same population.  In this respect, this test is different from the parametric t-test, which strictly tests for differences in locations (means) of two samples.  

9.7.1.3.  Mann-Whitney U Test


The Mann-Whitney U test is a nonparametric alternative to the t-test for independent samples.  The procedure expects the data to be arranged in the same way as for the t-test for independent samples. 


Specifically, the data file should contain a coding variable (independent variable) with at least two distinct codes that uniquely identify the group membership of each case in the data.


The Mann-Whitney U test assumes that the variable under consideration was measured on at least an ordinal (rank order) scale.  The interpretation of the test is essentially identical to the interpretation of the result of a t-test for independent samples, except that the U test is computed based on rank sums rather than means (it is a measure of differences in average ranks). The U test is the most powerful (or sensitive) alternative to the t-test; in fact, in some instances it may offer even a greater power to reject the null hypothesis than the t-test.  


With samples larger than 20, the sampling distribution of the U statistics rapidly approaches the normal distribution.62 Hence, the U statistics (adjusted for ties) will be accompanied by a z value (normal distribution variate value), and the respective p value.  

9.7.1.4. Kolmogorov-Smirnov Test


The Kolmogorov-Smirnov test assesses the hypothesis that two samples were drawn from different populations.  Unlike the parametric t-test for independent samples or the Mann-Whitney U test, which test for differences in the location of two samples (differences in means, differences in average ranks, respectively), the Kolmogorov-Smirnov test is also sensitive to differences in the general shapes of the distributions in the two samples, i.e., to differences in dispersion, skewness, etc.

9.7.2. Differences Between Dependent Groups


If we want to compare two variables measured in the same sample we would use the t-test for dependent samples. Alternatives to this test are the Sign test and Wilcoxon's matched pairs test. If the variables of interest are dichotomous in nature (i.e., pass vs. no pass) then McNemar's Chi-square test is appropriate.

9.7.2.1. The t-test for Dependent Samples 


The t-test for dependent samples helps us to take advantage of one specific type of design in which an important source of within-group variation (or so-called, error) can be easily identified and excluded from the analysis.


Specifically, if two groups of observations (that are to be compared) are based on the same sample which was tested twice (e.g., before and after a treatment), then a considerable part of the within-group variation in both groups of scores can be attributed to the initial individual differences between samples. Note that, in a sense, this fact is not much different than in cases when the two groups are entirely independent (see the t-test for independent samples), where individual differences also contribute to the error variance. Note that in the case of independent samples, we cannot do anything about it because we cannot identify (or subtract) the variation due to individual differences in subjects. However, if the same sample was tested twice, then we can easily identify (or subtract) this variation.


Specifically, instead of treating each group separately, and analyzing raw scores, we can look only at the differences between the two measures (e.g., pre-test and post test) in each sample.


By subtracting the first score from the second one for each sample and then analyzing only those pure (paired) differences, we will exclude the entire part of the variation in our data set that results from unequal base levels of individual subjects. This is precisely what is being done in the t-test for dependent samples, and, as compared to the t-test for independent samples, it always produces better results (i.e., it is always more sensitive).

Paired differences


Let Y 1 and Y 2 be two variables, which estimate the same measured property. Then, let be

 
D = Y 1 – Y 2







   (9.47)

Variable D (paired differences) provides the mean AM(D) and next the standard deviation is obtained as


s(D) = 
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In this case, the associate (calculated from experimental data) t-value will be
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9.7.2.2. Sign Test
The sign test is an alternative to the t-test for dependent samples.  The test is applicable in situations when the researcher has two measures (under two conditions) for each subject and wants to establish that the two measurements (or conditions) are different. Each variable in the first list will be compared to each variable in the second list.


The only assumption required by this test is that the underlying distribution of the variable of interest is continuous; no assumptions about the nature or shape of the underlying distribution are required. The test simply computes the number of times (across subjects) that the value of the first variable (Y 1) is larger than that of the second variable (Y 2). Under the null hypothesis (stating that the two variables are not different from each other) we expect this to be the case about 50% of the time. Based on the binomial distribution we can compute a z value for the observed number of cases where  Y 1 > Y 2, and compute the associated tail probability for that  z value.

9.7.2.3. Wilcoxon Matched Pairs Test


This procedure assumes that the variables under consideration were measured on a scale that allows the rank ordering of observations based on each variable and that allows rank ordering of the differences between variables (this type of scale is sometimes referred to as an ordered metric scale.63 Thus, the required assumptions for this test are more stringent than those for the Sign test.


However, if they are met, that is, if the magnitudes of differences (e.g., different ratings by the same individual) contain meaningful information, then this test is more powerful than the Sign test.


In fact, if the assumptions for the parametric t-test for dependent samples (interval scale) are met, then this test is almost as powerful as the t-test.

9.7.2.4.  McNemar Chi-square


This test is applicable in situations where the frequencies in the table in form
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represent dependent samples. Two Chi-square values can be computed: A/D and B/C.  The Chi-square A/D tests the hypothesis that the frequencies in cells A and D are identical.  The Chi-square B/C tests the hypothesis that the frequencies in cells B and C are identical. 
9.7.3. Relationships between variables

To express a relationship between two variables one usually computes the correlation coefficient r. Equivalents to the standard correlation coefficient are Spearman ( and Kendall (.
If the two variables of interest are categorical in nature, appropriate statistics for testing the relationship between the two variables are the Chi-square test, the Phi square coefficient, and the Fisher exact test.

9.7.3.1.  Variance of the Error, se

Let p be the number of independent variables in equation of regression (see eq 9.34). Variance of error ( is estimated by se in formula
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9.7.3.2.  F-Value Associated with the Multiple rM

Let Y be a string of values and Ŷ an estimation for Y. F-value is given by
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9.7.3.3.  The ​t-Value for the Slope


The estimator
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of error in calculus of bk coefficient is calculated by using eq 9.52 and further
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The t-value for bk is
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9.7.3.4.  Confidence Interval


Let ( be the probability of error involved in accepting our research hypothesis that bk is coefficient of X k. 


Theoretical value for t, t* is of the form t*((, n-p-1) that is obtained through inversion of the function


( = St(x,d) = 
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when is obtained:


t* ((, d) = x which obeys St -1(x,d) = (.




   (9.57)

with d being the degrees of freedom (n-p-1), x is a real number and ( a probability.


The hypothesis that bk is the coefficient of X k is accepted if 
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With the value for t*((/2, n-p-1) and 
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we can calculate confidence interval for bk

bk ( t* (( /2, n-p-1)(
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and the confidence interval for Ŷ values (see eq 9.34)


Ŷ = b0 + 
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