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Topological Matrices

Chapter

TOPOLOGICAL  MATRICES PRIVATE 


A molecular graph can be represented by: a sequence of numbers, a polynomial, a single number or a matrix.1 These representations are aimed to be unique, for a given structure. Topological matrices can be accepted as a rational basis for designing topological indices.2 The main types of matrix descriptors are listed and illustrated in the following.

2.1.  Adjacency  matrix

Since early 1874, Sylvester3 has associated to an organic molecule a matrix A(G).

 This is a square table, of dimensions NxN, whose entries are defined as:
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      (2.1)


A(G) characterizes a graph up to isomorphism. It allows the reconstruction of the graph. A(G) is symmetric vs. its main diagonal, so that the transpose AT(G) leaves A(G) unchanged:


AT(G) = A(G)






   
      (2.2) 

Figure 2.1 illustrates the adjacency matrix for the graph G, and its powers, Ae ,

till e = 3. Note that the entries [Ae ]ij represent walks of length e, ew, 4 whereas the diagonal entries, [Ae ]ii count self  returning walks (or closed walks),  esrw. The sum of the

i-th row, RS, or of the i-th columns, CS of the entries in Ae equals the number of walks (of length e) starting from the vertex i. It is called the walk degree, ewi; for e = 1, one retrieves

the classical vertex degree, degi = 1wi.
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              A        1wi = degi       A2           2wi            A3           3wi
[image: image119.wmf]



    1   0  0  0  1        1         1  1  1  0       3         0  1  1  3       5   


    2   0  0  1  1        2         1  2  1  1       5         1  2  3  4      10  


    3   0  1  0  1        2         1  1  2  1       5         1  3  2  4      10


    4   1  1  1  0        3         0  1  1  3       5         3  4  4  2      13

     Figure 2.1. Adjacency matrices for the graph G2.1. 


If multibonds are taken into account, a variant of   A(G) , denoted  C(G),   (the connectivity matrix) can be written:



[image: image3.wmf]î

í

ì

Ï

=

Î

¹

=

)

(

)

,

(

or

if

0

)

(

)

,

(

and

if

]

[

G

E

j

i

j

i

G

E

j

i

j

i

b

ij

ij

C



      
      (2.3)
where bij is the conventional bond order: 1; 2; 3; 1.5 for simple, double, triple and aromatic bonds, respectively.


In its general form, the walk degree, can be defined as:
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      (2.4)

The raising at a power e, of a square matrix, can be eluded by applying the algorithm of Diudea, Topan and Graovac.5 It evaluates a (topological) property of a vertex i, by iterative summation of the first neighbors contributions. The algorithm, called eWM , is defined as:
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      (2.7)
where M is any square matrix and eW is the diagonal matrix of walk degrees. The diagonal elements, [eWM]ii equal the RSi of Me, or in other words, they are walk degrees, ewM,i (weighted by the property collected by M):5 
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      (2.8)

The half sum of the local invariants ewM,i , in a graph, defines a global invariant, called  the walk number ,eWM :
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When M = A; C, the quantity eWM (or simply eW) represents the so called molecular walk count;6 when M = D, (i.e., the distance matrix - see below) then eWM equals the Wiener number of rank e (see Chap. Topological Indices).


The sum of diagonal elements in a square matrix is called trace, Tr(Me):
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The half sum of diagonal elements offers a global invariant, esrwM  (Self Returning Walk number):
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                 (2.11)
which equals the moment of order e of the matrix M, MOM(Me). When M = A, the elements [Ae]ii count both self returning walks and circuits of length e. MOM(Ae) is related to the spectral properties of molecular graphs (e.g., the energy of molecular orbitals).7 


Figure 2.2 illustrates the graphical evaluation of ewi  and eW numbers, by using weighted graphs G{ewi}.
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      Figure 2.2. Graphical evaluation of  ewi and  eW:  e = 1-3. 


For indicating the edge adjacency, the EA matrix is used. The edge adjacency can be obtained from the line graph, L(G) (see Sect. 8.2). When a relation between vertices and edges is needed, the incidency matrix, VEA, can be constructed (Figure 2.3).4, 8 


[image: image13.wmf]4

1

2

3

5

6

7

8


         EA(G2.4)


            VEA(G2.4)

       12   13   14   15   56   67   78                 12  13  14   15   56   67   78

_________________________________________           ________________________________________
12      0     1     1     1     0     0     0            1     1     1     1    1     0     0     0

13      1     0     1     1     0     0     0            2     1     0     0    0     0     0     0

14      1     1     0     1     0     0     0            3     0     1     0    0     0     0     0

15      1     1     1     0     1     0     0            4     0     0     1    0     0     0     0

56      0     0     0     1     0     1     0            5     0     0     0    1     1     0     0

67      0     0     0     0     1     0     1            6     0     0     0    0     1     1     0

78      0     0     0     0     0     1     0            7     0     0     0    0     0     1     1

                                                                  8     0     0     0    0     0     0     1

Figure 2.3. Matrices EA and VEA  for the graph G2.4

2.2. Laplacian  Matrix

The Laplacian matrix is defined as:9-14

La(G) = DEG(G) - A(G)





    (2.12)
where DEG is the diagonal matrix of vertex degrees and A is the adjacency matrix. In multigraphs, A is changed by C (connectivity) matrix. For the graph G2.5 (3-methyl-heptan), the Laplacian is shown in Figure 2.4.



Spectrum of eigenvalues:


(1        (2            (3          (4           (5           (6           (7

0     0.3983    1.0000    1.0000    3.0000   3.3399   5.2618   

t(G2.5)  = 3 ;  Q(G2.5) = 7

Figure 2.4. The Laplacian matrix of the graph G2.5.
The Laplacian matrix is also referred to as the Kirchhoff matrix.12,15,16 It is involved in the matrix-tree theorem.17 Thus, the number of spanning trees, t(G), in a cycle-containing structure, is given by:


t(G) = (det ([La]ij) (






    (2.13)

where [La]ij is a submatrix of La, from which the row i and column j were deleted. The number t(G) can also be calculated from the spectrum of eigenvalues, (i, of the Laplacian, by  relation 12
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The Laplacian spectrum can be used for calculating the Wiener number9, 13 and represents a source of other graph invariants (see  Chap. Wiener- Type Indices).  For example, the number of edges, Q, in  a graph can be calculated by14
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2.3  Distance  Matrix


Distance Matrix D(G), was introduced in 1969 by Harary.4 It is a square symmetric table, of dimension NxN, whose entries are defined as:
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    (2.16)

where Ne,(i,j) = dij, the topological distance between i and j. The matrix D, (denoted hereafter De by reasons that will become clear in the following), for the graph G2.6. is illustrated in Figure 2.5. The RS (De)i denotes the distance from the vertex i to all N ‑1 vertices in graph.
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De (G2.6 ):

                            1   2   3   4   5   6   7   8     RSi
                    __________________________​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​__________________

 
            1      0   1   2   3   4   5   2   3      20 

                    2      1   0   1   2   3   4   1   2      14 

      
            3      2   1   0   1   2   3   2   1      12 

     
            4      3   2   1   0   1   2   3   2      14 

    
            5      4   3   2   1   0   1   4   3      18 

    
            6      5   4   3   2   1   0   5   4      24 


            7      2   1   2   3   4   5   0   3      20 


            8      3   2   1   2   3   4   3   0      18 

      Figure 2.5. Distance matrix for the graph G2.6
De matrix can be built up by calculating the boolean powers Ae; e ( [1, d(G)], where A = I + A, with I being the unity matrix and  d(G) the diameter of graph. The procedure is illustrated for the graph G2.4 in  Figure 2.6.



  De (G2.4)


           A1(G2.4)
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	0
	1
	1
	1
	1
	2
	3
	4
	
	1
	1
	1
	1
	1
	1
	0
	0
	0

	2
	1
	0
	2
	2
	2
	3
	4
	5
	
	2
	1
	1
	0
	0
	0
	0
	0
	0

	3
	1
	2
	0
	2
	2
	3
	4
	5
	
	3
	1
	0
	1
	0
	0
	0
	0
	0

	4
	1
	2
	2
	0
	2
	3
	4
	5
	
	4
	1
	0
	0
	1
	0
	0
	0
	0

	5
	1
	2
	2
	2
	0
	1
	2
	3
	
	5
	1
	0
	0
	0
	1
	1
	0
	0

	6
	2
	3
	3
	3
	1
	0
	1
	2
	
	6
	0
	0
	0
	0
	1
	1
	1
	0

	7
	3
	4
	4
	4
	2
	1
	0
	1
	
	7
	0
	0
	0
	0
	0
	1
	1
	1

	8
	4
	5
	5
	5
	3
	2
	1
	0
	
	8
	0
	0
	0
	0
	0
	0
	1
	1




  A2(G2.4)


           A 3(G2.4) 

	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	1
	1
	1
	1
	1
	1
	0
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	0

	2
	1
	1
	1
	1
	1
	0
	0
	0
	
	2
	1
	1
	1
	1
	1
	1
	0
	0

	3
	1
	1
	1
	1
	1
	0
	0
	0
	
	3
	1
	1
	1
	1
	1
	1
	0
	0

	4
	1
	1
	1
	1
	1
	0
	0
	1
	
	4
	1
	1
	1
	1
	1
	1
	0
	0

	5
	1
	1
	1
	1
	1
	1
	1
	0
	
	5
	1
	1
	1
	1
	1
	1
	1
	1

	6
	1
	0
	0
	0
	1
	1
	1
	1
	
	6
	1
	1
	1
	1
	1
	1
	1
	1

	7
	0
	0
	0
	0
	1
	1
	1
	1
	
	7
	1
	0
	0
	0
	1
	1
	1
	1

	8
	0
	0
	0
	0
	0
	1
	1
	1
	
	8
	0
	0
	0
	0
	1
	1
	1
	1




   A 4(G2.4)


           A 5(G2.4)
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	1
	1
	1
	1
	1
	1
	1
	0
	
	2
	1
	1
	1
	1
	1
	1
	1
	1

	3
	1
	1
	1
	1
	1
	1
	1
	0
	
	3
	1
	1
	1
	1
	1
	1
	1
	1

	4
	1
	1
	1
	1
	1
	1
	1
	0
	
	4
	1
	1
	1
	1
	1
	1
	1
	1

	5
	1
	1
	1
	1
	1
	1
	1
	1
	
	5
	1
	1
	1
	1
	1
	1
	1
	1

	6
	1
	1
	1
	1
	1
	1
	1
	1
	
	6
	1
	1
	1
	1
	1
	1
	1
	1

	7
	1
	1
	1
	1
	1
	1
	1
	1
	
	7
	1
	1
	1
	1
	1
	1
	1
	1

	8
	1
	0
	0
	0
	1
	1
	1
	1
	
	8
	1
	1
	1
	1
	1
	1
	1
	1


Figure 2.6. The construction of De (G2.4) by using boolean powers, Ae for G2.4.  


The entries [De]ij are defined by:


[De]ij = e : [Ae]ij ( [Ae -1]ij ;   e = 1, 2, ...d(G)



   (2.17)


By applying the eWM algorithm (eqs 2.5-2.7) on De results in eWDe numbers, which are Wiener numbers of rank e,18 (see Chap. Topological Indices). The diagonal entries in the matrix (De)e represent degrees of the self returning walks, esrwD,i , weighted by distance.

 
Figure 2.7 illustrates the graphical evaluation of ewD,i quantities, by using the weighted graph G{eWD,i }. Note that the matrix De can be considered as the connectivity matrix of a complete graph, KN (having the same number, N, of vertices as the initial graph) with the weight (i.e., multiplicity) of edges equaling the distance dij.
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            G2.7                 K5{0wD,i = 1}                     K5{1wD,i}                          K5{2wD,i}






            1WD = 20
            2WD = 167

Figure 2.7. Graphical evaluation of the numbers  ewD,i  and eWD .

2.4.  Detour  Matrix

In cycle-containing graphs, when the shortest path (i.e., geodesic) is replaced by the longest path between two vertices i and j, the maximum path matrix, or the detour matrix, (e can be constructed19,20   


[(e]ij = 
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                    (2.18)
Figure  2.8. illustrates this matrix for 1-Ethyl-2-methyl-cyclopropane, G2.8.
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          (e (G2.8)


         (-D(G2.8)
	
	1
	2
	3
	4
	5
	6
	
	
	1
	2
	3
	4
	5
	6

	1
	0
	1
	3
	3
	4
	5
	
	1
	0
	1
	3
	3
	4
	5

	2
	1
	0
	2
	2
	3
	4
	
	2
	1
	0
	2
	2
	3
	4

	3
	3
	2
	0
	2
	3
	4
	
	3
	2
	1
	0
	2
	3
	4

	4
	3
	2
	2
	0
	1
	2
	
	4
	2
	1
	1
	0
	1
	2

	5
	4
	3
	3
	1
	0
	1
	
	5
	3
	2
	2
	1
	0
	1

	6
	5
	4
	4
	2
	1
	0
	
	6
	4
	3
	3
	2
	1
	0


Figure 2.8.  Detour, (e, and detour-distance, (-D, matrices for the graph G2.8.

The two types of paths, the shortest and the largest ones, can be combined in one and the same square matrix, (-D, (originally called Maximum minimum Path,  MmP,20 whose entries are defined as:


[(-D]ij = 
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It is easily seen that the upper triangle is identical to that in the matrix (e while the lower triangle coincides to that in the De matrix.

2.5.  3D - Distance  Matrices


When one considers the genuine distances between atoms (i.e., the distances measured through space), one obtains the geometric matrix, G.21, 22 When the distances refers to the vertices of a graph embedded on a graphite or a diamond lattice, we speak of topographic matrix, T.23  It is exemplified in Figure 2.9, for cis- (G2.9 a ) and trans-butadiene (G2.9  b ). 
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Figure 2.9.  (3D) - Distance matrices


Distance / Distance matrix,24 D / D, (also denoted Distance-Distance matrix) reports ratios of the geometric distance (i.e., measured through space, for a graph embedded in a 2D or a 3D grid) to graph distances (i.e., measured through bonds). It is also exemplified in Figure 2.9.

2.6.  Combinatorial  Matrices


Recently, two path-defined matrices have been proposed: the distance-path,18 Dp,  and the detour-path,25 (p (see also26) whose elements are combinatorially calculated from the classical distance (i.e., distance-edge), De and detour (i.e., detour-edge), (e matrices
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Np,(i,j)  represents the number of all internal paths27 of length  
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     Dp



                       (p
	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	1
	0
	1
	3
	6
	10
	15
	3
	6
	44
	
	1
	0
	15
	21
	6
	10
	15
	21
	28
	28
	1

	2
	1
	0
	1
	3
	6
	10
	1
	3
	25
	
	2
	15
	0
	15
	10
	6
	10
	15
	21
	21
	21

	3
	3
	1
	0
	1
	3
	6
	3
	1
	18
	
	3
	21
	15
	0
	15
	21
	15
	21
	28
	28
	28

	4
	6
	3
	1
	0
	1
	3
	6
	3
	23
	
	4
	6
	10
	15
	0
	15
	10
	15
	21
	21
	10

	5
	10
	6
	3
	1
	0
	1
	10
	6
	37
	
	5
	10
	6
	21
	15
	0
	15
	21
	28
	28
	15

	6
	15
	10
	6
	3
	1
	0
	15
	10
	60
	
	6
	15
	10
	15
	10
	15
	0
	15
	21
	21
	21

	7
	3
	1
	3
	6
	10
	15
	0
	6
	44
	
	7
	21
	15
	21
	15
	21
	15
	0
	1
	1
	28

	8
	6
	3
	1
	3
	6
	10
	6
	0
	35
	
	8
	28
	21
	28
	21
	28
	21
	1
	0
	3
	36

	
	
	
	
	
	
	
	
	
	
	
	9
	28
	21
	28
	21
	28
	21
	1
	3
	0
	36

	
	
	
	
	
	
	
	
	
	
	
	10
	1
	21
	28
	10
	15
	21
	28
	36
	36
	0


Figure 2.10. Combinatorial matrices


Matrices Dp and (p allow the direct calculation of the hyper-Wiener, WW, and hyper-detour , ww, indices, respectively. (see Chap. Topological Indices). Matrix Dp, like De, allows the immediate reconstruction of the original graph:  entries [1] give A  matrix. 

2.7.  Wiener  Matrices


Randi( proposed a square matrix, denominated Wiener matrix,28,29 W, and exploited it as a source of structural invariants, useful in QSPR/QSAR. For trees, the non-diagonal entries in such a matrix are defined as:


[We/p]ij = Ni,e/p Nj,e/p






    (2.23)

where Ni  and Nj denote the number of vertices lying on the two sides of the edge/path, e/p (having i and j as endpoints). The diagonal entries are zero. 

Eq. 2.23 defines just the edge/path contributions to a global index: it is the Wiener number,30 W, when defined on edge, (i.e., (i,j)(E(G)) and hyper-Wiener number,31 WW, when defined on path (i.e., (i,j )(P(G)) - see Chap. Topological Indices).


Wiener matrices are illustrated in Figure 2.10, for the graph G2.10. We is an adjacency matrix weighted by the number of external paths which include a given edge, e. Note that any topological index  defined on edge, can be written as a weighted adjacency matrix.


Wp allows the reconstruction of the original graph according to the Randi( conjecture:29  "take a single line in Wp at once. Identify the largest entry [Wp]ij in that line and replace it by 1. After the completion of all lines, make the matrix symmetric. Thus results in the matrix A, from which the reconstruction is trivial".
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     We




         Wp
	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi

	1
	0
	7
	0
	0
	0
	0
	0
	0
	7
	
	1
	0
	7
	5
	3
	2
	1
	1
	1
	20

	2
	7
	0
	15
	0
	0
	0
	7
	0
	29
	
	2
	7
	0
	15
	9
	6
	3
	7
	3
	50

	3
	0
	15
	0
	15
	0
	0
	0
	7
	37
	
	3
	5
	15
	0
	15
	10
	5
	5
	7
	62

	4
	0
	0
	15
	0
	12
	0
	0
	0
	27
	
	4
	3
	9
	15
	0
	12
	6
	3
	3
	51

	5
	0
	0
	0
	12
	0
	7
	0
	0
	19
	
	5
	2
	6
	10
	12
	0
	7
	2
	2
	41

	6
	0
	0
	0
	0
	7
	0
	0
	0
	7
	
	6
	1
	3
	5
	6
	7
	0
	1
	1
	24

	7
	0
	7
	0
	0
	0
	0
	0
	0
	7
	
	7
	1
	7
	5
	3
	2
	1
	0
	1
	20

	8
	0
	0
	7
	0
	0
	0
	0
	0
	7
	
	8
	1
	3
	7
	3
	2
	1
	1
	0
	18


Figure 2.11. Wiener matrices for the graph G2.6
2.8.  Szeged  Matrices


Since the Wiener matrix is not defined in cyclic structures, (see eq 2.23) Gutman32 has changed the meaning of Ni and Nj as follows:


ni,e/p  = ({v(v(V(G);  div < djv}(





   (2.24)


nj,e/p  = ({v(v(V(G);  djv < div}(





   (2.25)


Thus, ni,e/p  and nj,e/p denote the cardinality of the sets of vertices lying closer to i and to j; vertices equidistant to i and j are not counted. These quantities are the ground for the novel invariant, called the Szeged index32-38 (see Chap. 5).

Consequently, eq 2.23 can be re-written as:

[SZDe/p]ij = ni,e/p nj,e/p  






   (2.26)

where [SZDe/p]ij are the non-diagonal entries in the new matrices, called the Szeged-distance matrices,33 edge-defined (i.e., (i,j )(E (G )), SZDe, or path-defined, (i.e., (i,j ) ( P(G )), SZDp. The diagonal entries in these matrices are zero. Figure 2.12 illustrates the Szeged-Distance matrices for G2.6 (acyclic) and G2.12 (cyclic).
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           SZDe(G2.6)



 SZDe(G2.12)

	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	0
	7
	0
	0
	0
	0
	0
	0
	7
	
	1
	0
	7
	0
	0
	0
	0
	0
	0

	2
	7
	0
	15
	0
	0
	0
	7
	0
	29
	
	2
	7
	0
	12
	0
	0
	0
	0
	6

	3
	0
	15
	0
	15
	0
	0
	0
	7
	37
	
	3
	0
	12
	0
	12
	0
	0
	0
	0

	4
	0
	0
	15
	0
	12
	0
	0
	0
	27
	
	4
	0
	0
	12
	0
	12
	0
	8
	0

	5
	0
	0
	0
	12
	0
	7
	0
	0
	19
	
	5
	0
	0
	0
	12
	0
	7
	0
	0

	6
	0
	0
	0
	0
	7
	0
	0
	0
	7
	
	6
	0
	0
	0
	0
	7
	0
	0
	0

	7
	0
	7
	0
	0
	0
	0
	0
	0
	7
	
	7
	0
	0
	0
	8
	0
	0
	0
	12

	8
	0
	0
	7
	0
	0
	0
	0
	0
	7
	
	8
	0
	6
	0
	0
	0
	0
	12
	0



           SZDp(G2.6)

       
                       SZDp(G2.12)

	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	0
	7
	5
	15
	9
	15
	1
	15
	67
	
	1
	0
	7
	5
	10
	12
	12
	10
	5

	2
	7
	0
	15
	9
	15
	10
	7
	3
	66
	
	2
	7
	0
	12
	8
	12
	10
	12
	6

	3
	5
	15
	0
	15
	10
	12
	5
	7
	69
	
	3
	5
	12
	0
	12
	8
	12
	6
	8

	4
	15
	9
	15
	0
	12
	6
	15
	3
	75
	
	4
	10
	8
	12
	0
	12
	6
	8
	12

	5
	9
	15
	10
	12
	0
	7
	9
	15
	87
	
	5
	12
	12
	8
	12
	0
	7
	8
	12

	6
	15
	10
	12
	6
	7
	0
	15
	10
	85
	
	6
	12
	10
	12
	6
	7
	0
	12
	10

	7
	1
	7
	5
	15
	9
	15
	0
	15
	67
	
	7
	10
	12
	6
	8
	8
	12
	0
	12

	8
	15
	3
	7
	3
	15
	10
	15
	0
	68
	
	8
	5
	6
	8
	12
	12
	10
	12
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


Figure 2.12. Szeged-distance matrice

Usually, a path (i,j) is characterized by its endpoints i and j, namely, by their associated numbers. In Wiener matrices a path is characterized by the numbers Ni and Nj (see above). Now, let renounce to the characterization of j and build up a square matrix whose entries look at a single endpoint, i. According to this principle, referred to as the principle of unsymmetric characterization of a path,39-41 a new matrix, called the unsymmetric Szeged matrix, USZ , was constructed. The entries [UM]ij, M = SZD (Szeged-Distance - eq 2.28) and SZ( (Szeged-Detour - eq 2.29), are defined as:  
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    (2.29)

The diagonal entries in these matrices are zero. Note that the symbol ni,(i,j) recall the path (i,j) but the quantity given by eq  2.28 is identical to ni,e/p , eq 2.24.  Figure 2.13 illustrates the unsymmetric Szeged matrices for the graph G2.13
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                            USZD(G2.13)



               USZ((G2.13)



          Figure 2.13. Unsymmetric Szeged  matrices for the graph G2.13
These matrices can be symmetrized by the procedure

SMp   = UM ( (UM)T






    (2.30)

SMe   = SMp ( A






    (2.31)

where A is the adjacency matrix. The symbol ( indicates the Hadamard (pairwise) matrix  product42  (i.e., [Ma ( Mb]ij = [Ma]ij [Mb]ij ).  For the symmetric matrices, the letter S is usually missing. 

Two indices are calculated33, 40, 43 on the  Szeged matrices, M, M = SZD; SZ(  
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where summation goes over all edges, e, (resulting an index) and over all paths, p, (resulting a hyper-index)33 respectively. The symbol varies by the operator used and by the type of matrix: symmetric or unsymmetric (see Sect. 6.1). It is obvious that I(M} = I2(UM). Note that IE(SZD) means the classical Szeged index, symbolized Sz by Gutman. 

2.9.  Path  Matrix  P

Randić44 defined the entries in the P matrix as the quotient between the number of paths P' in a subgraph, G' = G-(i,j), (resulted by cutting the edge (i,j) from the graph G), to the number of paths P in G
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When the subgraph G - (i,j) is disconnected, then the contributions for each component are added. This matrix is illustrated in Figure 2.14.  The index calculated on this matrix is called the P'/P index. By a similar procedure, Randić et al.45 defined the graphical bond order related to a certain graph invariant (see Chap. Topological Indices).
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P(G2.14)
	
	1
	2
	3
	4
	5
	6
	7
	8

	1
	0
	55/95
	0
	0
	0
	55/95
	0
	0

	2
	55/95
	0
	50/95
	0
	0
	0
	0
	53/95

	3
	0
	50/95
	0
	52/95
	0
	0
	0
	0

	4
	0
	0
	52/95
	0
	52/95
	0
	0
	0

	5
	0
	0
	0
	52/95
	0
	50/95
	0
	0

	6
	55/95
	0
	0
	0
	50/95
	0
	53/95
	0

	7
	0
	0
	0
	0
	0
	53/95
	0
	54/95

	8
	0
	53/95
	0
	0
	0
	0
	54/95
	0


Figure 2.14. Path matrix for the graph G2.14
2.10.  Hosoya  Matrix

Randić46 introduced the Hosoya matrix by an analogue cutting procedure. He calculated the Hosoya number,47 Z, on the spanning subgraph G - (i,j) of a tree
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The Z number counts the modes of selecting k edges in a graph such that they are non-adjacent to each other (i.e., the number of k-matching of G - see Chap. Topological Indices). The matrix is illustrated in Figure 2.5 for the graph G2.15. 







Z (G2.15)










	(i,j)
	G-(i,j)
	Non-adjacent two edge selections (k = 2)
	Z(G-(i,j))
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Figure 2.15. Construction of Hosoya matrix, Z, for the graph G2.15
The Z matrix and the path numbers, calculated on it, were further generalized for cycle-containing graphs as well as for edge-weighted molecular graphs.48,49

2.11. Cluj  Matrices

2.11.1. CJ Matrices 

            The unsymmetric Cluj matrix, UCJ , has been recently proposed by Diudea.39-41,43,50  It is defined by  using either the distance or the detour concept: The non-diagonal entries,  [UM]ij  , M = CJD (Cluj-Distance) or CJ( (Cluj-Detour), are defined as:
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where    
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, which is taken as the maximum over all paths pk = (i,j)k . 
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 are the sets of distances (i.e., geodesics) and detours (i.e., elongations), respectively .


The set  
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 consists of  vertices v lying closer to the vertex i (condition div < djv). This variant of Cluj matrices is called51 at least one path external to the path (i,j), since at least one of the paths (v,i)h must be external with respect to the path  (i,j)k : 
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(. The diagonal entries are zero. For paths  (i,v)h no other restriction is imposed.  The above definitions hold for any connected graph. The Cluj matrices are square arrays, of dimension NxN, usually unsymmetric (excepting some symmetric regular graphs). They can be symmetrized cf. eqs 2.30 and 2.31. Figure 2.16 illustrates these matrices for the graphs G2.6 and G2.16.
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    UCJD(G2.6)


   
                         UCJ(( G2.16)

	
	1
	2
	3
	4
	5
	6
	7
	8
	RS(We)
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	1
	0
	1
	1
	1
	1
	1
	1
	1
	7
	
	1
	0
	1
	1
	2
	2
	1
	1
	2
	1
	1

	2
	7
	0
	3
	3
	3
	3
	7
	3
	29
	
	2
	1
	0
	1
	1
	2
	2
	2
	3
	3
	1

	3
	5
	5
	0
	5
	5
	5
	5
	7
	37
	
	3
	1
	1
	0
	1
	1
	3
	3
	2
	2
	2

	4
	3
	3
	3
	0
	6
	6
	3
	3
	27
	
	4
	2
	1
	1
	0
	1
	1
	2
	1
	1
	2

	5
	2
	2
	2
	2
	0
	7
	2
	2
	19
	
	5
	2
	2
	1
	1
	0
	1
	1
	2
	2
	3

	6
	1
	1
	1
	1
	1
	0
	1
	1
	7
	
	6
	1
	1
	2
	1
	1
	0
	1
	1
	2
	2

	7
	1
	1
	1
	1
	1
	1
	0
	1
	7
	
	7
	2
	2
	3
	3
	1
	1
	0
	1
	1
	2

	8
	1
	1
	1
	1
	1
	1
	1
	0
	7
	
	8
	3
	3
	2
	2
	2
	1
	1
	0
	1
	1

	CS(De)
	20
	14
	12
	14
	18
	24
	20
	18
	
	
	9
	1
	2
	1
	1
	2
	2
	1
	1
	0
	1

	
	
	
	
	
	
	
	
	
	
	
	10
	1
	1
	2
	2
	3
	2
	2
	1
	1
	0


Figure 2.16. Unsymmetric Cluj matrices for the graphs G2.6 and G2.16.

It is obvious that, in trees, UCJD is identical to UCJ(, due to the uniqueness of the path joining a pair of vertices (i,j).

 In trees, UCJD matrix shows an interesting property: 

RS(UCJD) = RS(We)






   (2.38)

CS(UCJD) = CS(De)






    (2.39)

Thus, UCJD contains some information included in both We and De matrices. The half sum of entries in all the three matrices equal the Wiener index (see Chap. Topological Indices):
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Note that the operator 
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 (see eqs 2.32 and 2.33) may be calculated both for symmetric and unsymmetric matrices. When the last two operators are calculated on a symmetric matrix, the terms of sum represent squared entries in that matrix. This is the reason for the number 2 in the symbol of these operators. Only in trees, and only for Cluj distance indices,
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2.11.2. CF Matrices
It happens that 
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be sets of disconnected vertices. This fact is undesirable when molecular graphs (which are always connected graphs) are investigated. If 
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 real (connected) chemical fragments are wanted, the Cluj fragmental matrices52 are defined. In this version, the sets 
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where div(Gp) and djv(Gp) are the topological distances between a vertex v and vertices i and j, respectively, in the spanning subgraph  Gp resulted by cutting the path pk = (i,j)k (except its endpoints) from G. 


The set  
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 consists now of  vertices lying closer to the vertex i in Gp. This version is called50  all paths  external to the path  (i,j)k , by reason that all paths (i,v)h , h = 1,2,... (see eq 2.37) are external with respect to  pk , since the last path was already cut off. The diagonal entries are zero. 


When pk (
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, then Cluj Fragmental Distance matrix, CFD, is defined; in case pk (
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, the matrix is Cluj Fragmental Detour, CF(. The entries [UM]ij  , M = CFD ; CF(  represent connected subgraphs, both in Gp  and G. 

Theorem 2.1.


For any i, j ( V(G), and for any path joining i and j, pi,j ( Pi,j(G), the Cluj Fragment, CFi (Gp) ( 
[image: image81.wmf]k
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 (cf. eq. 2.42) , is a fragment (i.e., connected subgraph).

Demonstration:

 
Let v ( CFi(Gp), involving div(Gp) < djv(Gp) (Szeged-Cluj criterion). It follows that div is finite and a shortest path joining i and v, piv ( Piv(Gp) may exist (for simplicity Gp is hereafter missing).

 For any vertex k lying on that path, k ( piv, we have to prove that dik < djk and (cf. criterion) k ( CFi and CFi is connected.

From k ( piv, it follows that there exists a path joining k and i, pik ( Pik, such that pik ( piv and a path joining k and v, pkv ( Pkv with pkv ( piv. It is immediate that piv = pik ( pkv. Since piv is a geodesic it follows that it is a sum of geodesics. Thus, we can write div  = dik   + dkv.

Case 1: djv is finite (Gp is connected). There exists a path pjv, which is the shortest path joining v and j such that djv  (  djk   + dkv (d is a metric) and, from hypothesis, 

 dik    +  dkv  =  div  < djv  (  djk   + dkv



   
    (2.43)

following that dik <  djk,  k ( CFi and CFi is connected.

Case 2: djv is infinite (Gp is disconnected). There is no path pjv, to join j and v. The following relations hold

dik  =  div - dkv < (  -  dkv < (





   (2.44)

djk  (  djv - dkv (  (  -  dkv = (




                (2.45)

It is immediate that dik < djk,  k ( CFi and CFi is connected.

The Cluj matrices, UCJDp, UCFDp, UCJ(p and UCF( p, for the graph G2.17 are illustrated in Figure 2.17 along with the corresponding fragmentation. A disconnected subgraph, CJDi is herein encountered.


In acyclic structures, CJDe = CFDe = SZDe = We  and CJDp = CFDp = Wp. In cyclic graphs, CJDe = CFDe = SZDe while CJDp ( CFDp ( SZDp , CJ(p ( CF(p ( SZ(p and We/p are not defined. Relationships between the corresponding indices will be discussed in the Chap. Cluj Indices.

	                                                       



	            UCJD (G2.17 )

	                     UCFD (G2.17 )



	
	           CJDi
	
	          CFDi

	( 2, 8), [ 2, 4, 7, 6, 8],

   { 2, 1, 5}(disconnected)

( 2, 8), [ 2, 1, 3, 6, 8],

   { 2, 4, 5}

( 8, 2), [ 8, 6, 3, 1, 2], { 8}

( 8, 2), [ 8, 6, 7, 4, 2], { 8}
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	( 2, 8), [ 2, 4, 7, 6, 8],

     { 2,1, 3, 5}

( 2, 8,) [ 2, 1, 3, 6, 8],

     { 2, 4, 5, 7}

( 8, 2), [ 8, 6, 3, 1, 2],

     { 8}

( 8, 2), [ 8, 6, 7, 4, 2],

     { 8}
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Figure 2.17.Unsymmetric Cluj matrices and fragmentation for the graph G2.17.


An interesting property is shown by the detour-based matrices: CJ(p and CF(p. Let consider the vertices 8 (of degree 1) and 5 (of degree 2) in G2.17, Figure 2.17. The vertex 8 is an external vertex (with a terminal path ending in it) while the vertex 5 is an internal one (usually a terminal path not ending in it). An external vertex, like 8, shows all its entries in the Cluj matrices equal to 1 (see Figure 2.17). The same entries are shown by the internal vertex 5. 

	UCJ( (G2.17)

	                     UCF((G2.17)


	
	


	
	CJ( i
	
	CF( i

	(3, 5),  [3,1,2,4,5],

   {3,6,8}

(3, 5),  [3,6,7,4,5],

   {3,1}

(5, 3),  [5,4,2,1,3],

   {5}

(5, 3),  [5,4,7,6,3],

   {5}
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	(3, 5),  [3,1,2,4,5],

   {3,6,7,8}

(3, 5),  [3,6,7,4,5],

   {3,1,2}

(5, 3),  [5,4,2,1,3],

   {5}

(5, 3),  [5,4,7,6,3],

   {5}
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Figure 2.17. (continued).

This unusual property is called the internal ending of all detours joining a vertex i and the remaining vertices in G. Such a vertex is called an internal endpoint.50 There exist graphs with all the vertices internal endpoints and their detours are Hamiltonian paths now. This kind of graph we call the full Hamiltonian detour graph, FH( (see Chap. 8).
2.12.  Distance  Extended  Matrices


Tratch et al.53 have proposed an extended distance matrix, E, whose entries are the product of the entries in the De matrix and a multiplier, mij , which is the number of paths in the  graph of which path (i,j) is a subgraph. In acyclic structures, it equals the entries in the Wiener matrix Wp, so that E is further referred to as D_Wp matrix


[D_Wp]ij = [De]ij mij = [De]ij [Wp]ij = dij Ni Nj



   (2.46)
where dij  is the topological distance between i and j and  Ni , Nj  have the same meaning as in case of the Wiener matrix (see above). The D_Wp matrix is just the Hadamard product42  of the De and Wp  matrices. The half sum  of its entries gives an expanded Wiener number.28,53 Figure 2.18 illustrates this matrix for the graph G2.6. 
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 D_Wp(G2.6)

   
                                          D_UCJD( G2.6)

	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	RSi(Wp)

	1
	0
	7
	10
	9
	8
	5
	2
	3
	44
	
	1
	0
	1
	2
	3
	4
	5
	2
	3
	20

	2
	7
	0
	15
	18
	18
	12
	7
	6
	83
	
	2
	7
	0
	3
	6
	9
	12
	7
	6
	50

	3
	10
	15
	0
	15
	20
	15
	10
	7
	92
	
	3
	10
	5
	0
	5
	10
	15
	10
	7
	62

	4
	9
	18
	15
	0
	12
	12
	9
	6
	81
	
	4
	9
	6
	3
	0
	6
	12
	9
	6
	51

	5
	8
	18
	20
	12
	0
	7
	8
	6
	79
	
	5
	8
	6
	4
	2
	0
	7
	8
	6
	41

	6
	5
	12
	15
	12
	7
	0
	5
	4
	60
	
	6
	5
	4
	3
	2
	1
	0
	5
	4
	24

	7
	2
	7
	10
	9
	8
	5
	0
	3
	44
	
	7
	2
	1
	2
	3
	4
	5
	0
	3
	20

	8
	3
	6
	7
	6
	6
	4
	3
	0
	35
	
	8
	3
	2
	1
	2
	3
	4
	3
	0
	18

	CSi
	44
	83
	92
	81
	79
	60
	44
	35
	
	CSi(Dp)
	44
	25
	18
	23
	37
	60
	44
	35
	



​​


Figure 2.18. Distance-extended matrices, for the graph G2.6.


Similarly, Diudea39 has performed the Hadamard product De ( UCJD


[D_UCJD]ij  = [De]ij [UCJD]ij  = dij Ni,(ij) 



   (2.47)

This matrix (illustrated in Figure 2.18 for the graph G2.6) shows, in trees, the equalities


CS(D_UCJD) = CS(Dp) 





   (2.48)


RS(D_UCJD)  = RS(Wp) 





   (2.49)

Thus, IP(D_UCJD) calculates the hyper-Wiener index (as the half sum of its entries). The D_UCJD matrix is a direct proof of the finding27 that the sum of all internal paths (given by Dp) equals the sum of all external paths (given by Wp) with respect to all pairs (i,j) in a graph. 
The  matrix D_UCJD offers a new definition of the hyper-Wiener number (see Chap. Topological Indices and eq 2.47). Various other combinations: D_M or (_M, M being a symmetric or unsymmetric square matrix, were performed in trees or in cycle-containing graphs, by  means of the CLUJ software program.

Similarly, a 3D-extension39 (e.g., by using the geometric matrix, G) allows the construction of various 3D-distance extended matrices, such as G_UCJD (see Figure 2.19). They can offer 3D- sensitive indices.
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    UCJD(G2.18)



  G(G2.18)



	
	1
	2
	3
	4
	5
	6
	7
	
	
	1
	2
	3
	4
	5
	6
	7

	1
	0
	1
	1
	1
	1
	1
	1
	
	1
	0.0000
	1.5414
	2.5709
	3.9411
	4.5163
	2.5178
	3.0305

	2
	6
	0
	3
	3
	3
	6
	3
	
	2
	1.5414
	0.0000
	1.5543
	2.5634
	3.0891
	1.5388
	2.5821

	3
	4
	4
	0
	5
	5
	4
	6
	
	3
	2.5709
	1.5543
	0.0000
	1.5468
	2.5852
	2.5930
	1.5395

	4
	2
	2
	2
	0
	6
	2
	2
	
	4
	3.9411
	2.5634
	1.5468
	0.0000
	1.5364
	3.0398
	2.5461

	5
	1
	1
	1
	1
	0
	1
	1
	
	5
	4.5163
	3.0891
	2.5852
	1.5364
	0.0000
	3.6199
	3.9326

	6
	1
	1
	1
	1
	1
	0
	1
	
	6
	2.5178
	1.5388
	2.5930
	3.0398
	3.6199
	0.0000
	3.2366

	7
	1
	1
	1
	1
	1
	1
	0
	
	7
	3.0305
	2.5821
	1.5395
	2.5461
	3.9326
	3.2366
	0.0000





G_UCJD(G2.18)





Figure 2.19. 3D-Distance-extended Cluj matrix for the graph G2.18.

2.13.  Reciprocal  Matrices

In chemical graph theory, the distance matrix accounts for the through bond interactions of atoms in molecules. However, these interactions decrease as the distance between atoms increases. This reason lead to the introduction, in 1993, by the group of Balaban54 and Trinajsti(,55  respectively, of the reciprocal distance matrix, RDe. The entries in this matrix are defined by


[RDe]ij  = 1 / [De]ij






    (2.50) 


RDe matrix allows the calculation of a Wiener number analogue, called the Harary index55  (see Chap. Topological Indices), in the honor of Frank Harary. 


Since topological matrices are considered natural sources in deriving graph descriptors,2,28,29 some other matrices having entries as reciprocal (topological) property : [RM]ij = 1/[M]ij; M = We/p, Dp, USZD   and UCJD have been recently proposed by Diudea,56  as a ground for new Harary-type indices (see Chap. Topological Indices). Figure 2.20. illustrates some reciprocal property matrices, for the graph G2.8.
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Figure 2.20. Reciprocal matrices for the graph G2.8.
2.14.  Walk  Matrices

Diudea [96Diu1] has recently proposed the walk matrix,18,57 W(M1,M2,M3), constructed by the principle of the single endpoint characterization of a path,18,58
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where  WM1,i  is the walk degree, of elongation [M2]ij , of the vertex i, weighted by the property collected in matrix M1 (i.e., the ith row sum of the matrix M1, raised  to power [M2]ij). The diagonal entries are zero. It is a square, (in general) non-symmetric matrix. This matrix, that mixes three square matrices, is a  true matrix operator (see below).

Let, first, (M1, M2, M3) be (M1 , 1, 1), where 1 is the matrix with  the off-diagonal elements  equal  to  1.  In this case, the (i,j)-elements of matrix W(M1,1,1,) will be
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    (2.52)


Next, consider the combination (M1, 1, M3); the corresponding walk matrix can be expressed as the Hadamard product
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Examples are given in Figure 2.21 for the Graph G2.18, in case: M1 = A and M3 = De.

The sum of all entries in 
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where u and uT are the unit vector  (of order N) and its transpose, respectively. The row sum vector in W(M1,1,M3)  can be achieved by the pairwise product of the row sums in M1 and M3, respectively:
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    (2.55)

This vector represents a collection of pairwise products of local (topological) properties (encoded as corresponding row sums in M1 and M3 - see above). Eq 2.54 is a joint of the Cramer and Hadamard matrix algebra, by  means of W(M1,1,M3).
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    A (G2.18)



               De (G2.18)

	
	1
	2
	3
	4
	5
	6
	7
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	RSi

	1
	0
	1
	0
	0
	0
	0
	0
	1
	
	1
	0
	1
	2
	3
	4
	2
	3
	15

	2
	1
	0
	1
	0
	0
	1
	0
	3
	
	2
	1
	0
	1
	2
	3
	1
	2
	10

	3
	0
	1
	0
	1
	0
	0
	1
	3
	
	3
	2
	1
	0
	1
	2
	2
	1
	9

	4
	0
	0
	1
	0
	1
	0
	0
	2
	
	4
	3
	2
	1
	0
	1
	3
	2
	12

	5
	0
	0
	0
	1
	0
	0
	0
	1
	
	5
	4
	3
	2
	1
	0
	4
	3
	17

	6
	0
	1
	0
	0
	0
	0
	0
	1
	
	6
	2
	1
	2
	3
	4
	0
	3
	15

	7
	0
	0
	1
	0
	0
	0
	0
	1
	
	7
	3
	2
	1
	2
	3
	3
	0
	14


              W(A,1,1)
 (G2.18)




    W(De,1,1) (G2.18)

	
	1
	2
	3
	4
	5
	6
	7
	RSi
	
	
	1
	2
	3
	4
	5
	6
	7
	RSi

	1
	0
	1
	1
	1
	1
	1
	1
	6
	
	1
	0
	15
	15
	15
	15
	15
	15
	90

	2
	3
	0
	3
	3
	3
	3
	3
	18
	
	2
	10
	0
	10
	10
	10
	10
	10
	60

	3
	3
	3
	0
	3
	3
	3
	3
	18
	
	3
	9
	9
	0
	9
	9
	9
	9
	54

	4
	2
	2
	2
	0
	2
	2
	2
	12
	
	4
	12
	12
	12
	0
	12
	12
	12
	72

	5
	1
	1
	1
	1
	0
	1
	1
	6
	
	5
	17
	17
	17
	17
	0
	17
	17
	102

	6
	1
	1
	1
	1
	1
	0
	1
	6
	
	6
	15
	15
	15
	15
	15
	0
	15
	90

	7
	1
	1
	1
	1
	1
	1
	0
	6
	
	7
	14
	14
	14
	14
	14
	14
	0
	84


      
   W(A,1,De) = W(A,1,1) ( De


    W(De,1,A) = W(De,1,1)  ( A
	
	1
	2
	3
	4
	5
	6
	7
	kiRS(De)i
	
	
	1
	2
	3
	4
	5
	6
	7
	RS(De)iki

	1
	0
	1
	2
	3
	4
	2
	3
	15
	
	1
	0
	15
	0
	0
	0
	0
	0
	15

	2
	3
	0
	3
	6
	9
	3
	6
	30
	
	2
	10
	0
	10
	0
	0
	10
	0
	30

	3
	6
	3
	0
	3
	6
	6
	3
	27
	
	3
	0
	9
	0
	9
	0
	0
	9
	27

	4
	6
	4
	2
	0
	2
	6
	4
	24
	
	4
	0
	0
	12
	0
	12
	0
	0
	24

	5
	4
	3
	2
	1
	0
	4
	3
	17
	
	5
	0
	0
	0
	17
	0
	0
	0
	17

	6
	2
	1
	2
	3
	4
	0
	3
	15
	
	6
	0
	15
	0
	0
	0
	0
	0
	15

	7
	3
	2
	1
	2
	3
	3
	0
	14
	
	7
	0
	0
	14
	0
	0
	0
	0
	14

	CS(ADe)i
	24
	14
	12
	18
	28
	24
	22
	142
	RS(ADe)i
	10
	39
	36
	26
	12
	10
	9
	142


Figure 2.21.  W(M1,M2,M3) algebra for the graph G2.18 ( ki = deg i ).

As walk numbers, eq 2.55 can be written
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 (2.56)
When M1 = M3, then eq 2.56 becomes
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and, by extension
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              (2.58)
where n is the matrix having entries [n]ij and 
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 means a (weighted) walk number, of length n+1. As global walk numbers, eq 2.58 can be written 
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      (2.59)
Eqs 2.54 and 2.59 prove that W(M1,M2,M3) is a true matrix operator.

Figure 2.21 illustrates that the sum of entries in W(A,1,De) equals that in W(De,1,A). However, the two matrices are not identical. Only the vectors of their walk numbers (i.e., row sums) are identical. In this particular case, the walk numbers mean the local contributions to the degree-distance index of Dobrynin,59 reinvented by Estrada,60 or the non-trivial part of the Schultz index.61 In walk number symbols, the local index can be written as 
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   (2.60)

The twin unsymmetric walk matrices (having reversed sequence M1,1,M3) show, thus, common  row sums but different column sums. However, the common point of these matrices is the Cramer product ADe (or in general, M1M3):

CS(W(A,1,De) ) = CS(ADe) 





   (2.61)

CS(W(De,1,A) ) = RS(ADe)





   (2.62)

A particular case of the walk matrix, RW(A,De,1) , (see also Sect. 2.13) is identical to the restricted random walk matrix of Randi(.62  
2.15.  Schultz  Matrices

The Schultz matrices, SCH(G) are related to the molecular topological index, MTI, or the Schultz index,61  (see Chap. Topological Indices). Diudea and Randi(63 have extended the Schultz’s definition by using a combination of three square matrices, one of them being obligatory the adjacency matrix
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It is easily seen that SCH(A,A,De) is the matrix on which the Schultz original index can be calculated. Analogue Schultz matrices, of sequence: (De,A,De), (RDe,A,RDe) and  (Wp,A,Wp) have been proposed and the corresponding indices tested for correlating ability.64-66  


A Schultz-extended matrix is related to the walk matrix by57,63
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When one of the square matrices are unsymmetric, the resulting Schultz matrix will also be unsymmetric. Matrices W(M1,M2,M3) involved in the calculation of SCH(De,A,UCJD), for the graph G2.18 are illustrated in Figure 2.22. It can be seen that the sum of all entries in the walk matrix 
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 equals that in SCH(De,A,UCJD), calculated by Cramer algebra.
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Figure 2.22. Walk and Schultz matrices for the graph G2.18.

2.16.  Layer  and  Sequence  Matrices


Layer matrices have been proposed in connection to the sequences of walks: DDS (Distance Degree Sequence),67-70 PDS (Path Degree Sequence),71-74 and WS (Walk Sequence).1 They are built up on the layer partitions in a graph.


A layer partition G(i) with respect to the vertex i, in G, is defined as5,70,75
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    (2.65)
where ecci is the eccentricity of i. Figure 2.23 illustrates the layer partitions for the graph G2.19.


[image: image111.wmf]1

2

3

4

2

1

5

3

4

3

4

2

1

5

4

3

2

1

5

1

2

3

4

5

5


                  G2.19                         G2.19 ( 1,5 )          G2.19 ( 2 )       G2.19 ( 3 )         G2.19 ( 4 )

     G2.19 (1) = {(1), (2), (3,5), (4)}

  G2.19 (2) = {(2), (1,3,5), (4)}

  G2.19 (3) = {(3), (2,4), (1,5)}

     G2.19 (4) = {(4), (3), (2), (1,5)}

     G2.19 (5) = {(5), (2), (1,3), (4)}

Figure 2.23. Layer partitions G(i) for the graph G2.19. 


Let G(v)j be the j th layer of vertices v located at distance j, in the layer partition G(i):
G(v)j = {v(div = j}






    (2.66)
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Figure 2.24. Layer matrices for the graph G2.18.

The entries in a layer matrix, LM, collect the property Mv (topological or chemical) for all vertices v belonging to the layer G(v)j 
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The matrix LM can be written as


LM (G) = { [LM]ij ;  i ( V(G );  j ( [0, d(G )] }
       


    (2.68)
where d(G) is the diameter of the graph. The dimensions of such a matrix are Nx (d(G)+1). Figure 2.24 illustrates some layer matrices: LC (Layer of Cardinalities), LDS (Layer of Distance Sums) and LeW (Layer of Walk degrees, of length e), for the graph G2.18.


Some properties of LM matrices are given below:

(1) The sum of entries in any row equals the sum on the column j = 0 and equals the global property M(G). When this property involves edges (e.g., a walk) the quantity M(G) must be divided by 2 for being equivalent to the walk numbers, eWM

(j [LM]ij  = (i [LM]i0 = M (G )




    (2.69)

(2) The entries in the column j = 1 of matrix LeW become the entries in the column j = 0 of the matrix Le+1W

[LeW]i1  = [Le+1W]i0 






    (2.70)

The above relation is valid for any graph, excepting the multigraphs. It represents the essence of the eWM algorithm (see Sect. 2.1) and also of the Morgan algorithm.76 

(3) The LC matrix (layer matrix of cardinalities) counts vertices lying on concentric layers/shells around each vertex i (V(G). Thus, the property Mv = 1 (i.e., the cardinality) and:


(j [LC]ij  = (i [LC]i0 = (V(G )( = N(G )



    (2.71)


(j [LC]i1 = 2(E(G )(= 2 Q(G )





    (2.72)  
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Figure 2.25. Sequence matrices and their spectra for the graph G2.20.

In fact this matrix follows just the layer partitions in G. The LC matrix can be viewed as a collection of distance degree sequences,67-70 DDSi (i.e., the number of vertices lying at the distance j form the vertex i - see below). 


A sequence matrix,70,75 SM, is defined as


[SM]ij = no. of  M of length j traversing the vertex i


    (2.73)

where M stands for some topological quantities involving edges: (all) paths, shortest paths (i.e., distances), longest paths (i.e., detours), cycles, (see also Chap. 8) etc.

 
A global sequence of M, called the M sequence (i.e., spectrum), is derived from such matrices
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where f is 1/2 for path-type sequences and 1/j for the cycle sequence. Eq 2.74 provides the global sequence DDS, from the sequence matrix of distance degrees, SDD, which is similar to LC, excepting the column j = 0 and the zero-columns j = d(G)+1, d(G)+2,...,d(G)+N. Thus, the LC matrix is the joint point of the LM and SM matrices. Figure 2.25 illustrates some sequence matrices and their spectra for the graph G2.20.
The spectra of all paths, APS, of distance degrees, DDS, of shortest paths, SPS, of detour degrees, (DS, and of longest paths, LPS, are different from each other in cycle-containing graphs but equal to each other in acyclic graphs, by virtue of the uniqueness of the path joining any two vertices.


Layer and sequence matrices can be represented in a line form.70 For the graph G2.18,  LC can be written as: 


LC (G2.18) = { 1 (1,1,2,2,1) ; 2 (1,3,2,1) ; 3 (1,3,3) ; 4 (1,2,2,2); 5(1,1,1,2,2)

                                     6(1,1,2,2,1); 7(1,1,2,3) }   


A canonical form can be written: the rows are ordered in decreasing length, (as non zero elements) and, at the same length, in lexicographic ordering.70 


Layer and sequence matrices are useful in studies of basic topological properties of the graphs as well as in calculating some topological indices (eg. indices of centrality and centrocomplexity - see Chap. Topological Indices).


* * *



Other matrices. Any topological index, defined on edge, can be written as weighted adjacency matrix.8, 28, 31, 77-79  A resistance distance matrix was proposed by Klein et al. 80, 81 in connection with the electrical network theory. A topological state matrix, taking into account the paths and chemical identity of vertices was proposed by Hall and Kier.82 A series of matrices, considering the heteroatoms and stereochemistry was proposed by  Schultz et al.83-91 as extensions of the molecular topological index.
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