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Introduction to Molecular Topology

Chapter 1

introduction  to  molecular  topology

       Graph theory applied in the study of molecular structures represents an interdisciplinary science, called chemical graph theory or molecular topology. By using tools taken from the graph theory, set theory and statistics it attempts to identify structural features involved in structure-property activity relationships. The partitioning of a molecular property and recombining its fragmental values by additive models is one of its main tasks. Topological characterization of chemical structures allows the classification of molecules and modeling unknown structures with desired properties.

       Before detailing the specific questions of molecular topology, some basic definitions1 in graph theory are needed.

1.1.  Graphs

A graph,  G = G(V, E) is a pair of two sets:  V = V(G), a finite nonempty set of N points (i.e. vertices)  and E = E(G), the set of Q unordered pairs of distinct points of V. Each pair of points (vi, vj) (or simply (i,j) ) is a line (i.e. edge), ei,j, of G if and only if  (i,j)( E(G). In a graph, N equals the cardinality, |V| , of the set V while Q is identical to |E|. A graph with N points and Q lines is called a (N, Q) graph (i.e. a graph of order N and dimension Q). Two vertices are adjacent if they are joined by an edge. If two distinct edges are incident with a common vertex then they are adjacent edges. The angle between edges as well as the edge length are disregarded. The term graph was introduced by Sylvester.2  


There is a variety of graphs, some of them being mentioned below.

A directed graph or digraph consists of a finite nonempty set V of points along with a collection of ordered pairs of distinct points. The elements of E are directed lines or arcs.1 

In a multigraph two points may be joined by more than one line. Figure 1.1. shows the three types of graphs above mentioned.
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             A path graph, P, is an unbranched chain.  A tree, T, is a branched structure. A star is a set of vertices joined by a common vertex; it is denoted by SN', with N' = N-1. A cycle, C, is a chain which starts and ends in one and the same vertex. (Figure 1.2).
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A complete graph, KN, is the graph with any two vertices adjacent. The number of edges in a complete graph is N(N-1)/2. In Figure 1.3, complete graphs with N = 1 to 5 are presented 



        


A bigraph (i.e. bipartite graph) is a graph whose vertex set V can be partitioned into two disjoint subsets: V1 ( V2 =V; V1 ( V2 = ( such that any edge (i,j) ( E(G) joins V1 with V2.1,3 A graph is bipartite if and only if all its cycles are even.4 


If any vertex i(V1 is adjacent to any vertex j(V2 then G is a complete bipartite graph and is symbolized by Km,n, with m = |V1|  and n = |V2|  A star is a complete bigraph K1,n. It is obvious that Km,n has mn edges. Figure 1.4 presents some bigraphs.

                  
[image: image2.wmf]

      A rooted graph is a graph in which heteroatoms or carbons with an unshared electron are specified5,6  (Figure 1.5).
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A homeomorph of a graph G is a graph resulted by inserting vertices of degree 2 (Figure 1.6)3 

                                  
[image: image4.wmf]

     A planar graph is a graph which can be drawn in the plane so that any two edges intersect to each other at most by their endpoints.7 The regions defined by a plane graph are called  faces, F, the unbounded region being the exterior face1 (e.g. f4  in Figure 1.7). For any spherical polyhedron with |V| vertices, |E| edges and |F| faces the Euler formula8 is true: 
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. A graph is planar if and only if it has no subgraphs homeomorphic to K5 or K3,3 (Kuratowski's theorem).9
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            The line graph, L(G), of a graph G, is constructed such that its points represent lines of G and two points of L(G) are adjacent if the corresponding lines of G are incident to a common point.1 Figure 1.8 illustrates this derivative of a graph (see also Sect. 8.2).
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            The complementary graph of a graph  G = (V, E) is a graph 
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 = (V, 
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), having the same set of vertices but joined with edges if and only if they were not present in G. The degree of each vertex in 
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 equals the difference between the vertex degree in the complete graph KN  and the corresponding vertex in G.7 (Figure 1.9).
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        A graph G is labeled, G(Lb), when its points are distinguished (e.g. by their numbers) from those of the corresponding abstract graph.10 There exists N! possibilities of numbering a graph of order N, G(Lbi); i = 1,2,...N!

Two graphs G=(V, E) and G1=(V1, E1) are isomorphic (written G ( G1) if there exists a function f : V        V1 which obeys the conditions:7,11,12


(1) f is a bijection (one-to-one and onto)


(2) for all vertices i, j(V; (i,j)(E ( (f(i), f(j))(E1.

The function f is called an isomorphism.


If f is the permutation operation, then there exists a permutation for which G(Lb) and G1(Lb) coincide (see Figure 1.10 - see also Sect. 8.1).
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A subgraph of a graph G is a graph G1 = (V1, E1) having V1 ( V and E1 ( E (Figure 1.11.). 
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A spanning subgraph is a subgraph G1 = (V, E1) containing all the vertices of G but E1 ( E (Figure 1.12.). 
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1.2.  Walks
A walk is a finite string, w1,n = (vi)1( i ( n , vi ( V(G ) such that any pair (vi-1, vi) ( E(G), 
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. Revisiting of vertices and edges is allowed.1,3,13 The walk is closed if v1 = vn and is open otherwise. When closed, it is also called self-returning walk. The set of all walks in G is denoted by 
[image: image16.wmf])
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. The length of a walk w1,n = (vi)1( i ( n equals the number of occurrences of edges in it.

The concept of walk is very extended. If no other conditions are imposed, the walk is called a random walk. Additional conditions specify various kinds of walk.14,15 


A trail (i.e. Eulerian walk) is a walk having all its edges distinct. Revisiting of vertices is allowed.

A path (i.e. self-avoiding walk) is a finite string, p1,n = (vi)1( i ( n , vi ( V(G)  such that any pair (vi-1, vi) (E(G), 
[image: image17.wmf]n

i

...,

,

2

=

 and vi ( vj, (vi-1, vi) ( (vj-1, vj) for any 1 ( i < j ( n. Revisiting of vertices and edges, as well as branching is prohibited. The set of all paths in G is denoted by P(G). 

A graph is connected if every pair of vertices is joined by a path. A maximal connected subgraph of G is called a component. A disconnected graph has at least two components.1  
A terminal path,  t p1,n = (vi)1( i ( n ,  vi ( V(G ),  is the path  involving a walk  w = v1, v2,...,vn, vk, that is no more a path in G, for any vk(V(G)  such that (vn, vk ) ( E.
A closed path is a cycle (i.e. circuit). The girth of a graph, g(G), is the length of a shortest cycle (if any) in G. The circumference, c(G) is the length of a longest cycle.1 A cycle is both a self-returning and a self-avoiding walk. A n-membered cycle includes n terminal paths in it.
A path is Hamiltonian if n = | V | . In other words, a Hamiltonian path visits once all the vertices in G. If such a path is a closed one, then it is a Hamiltonian circuit. Figure 1.13 illustrates each type of the above discussed walks.
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      The distance, dij, between two vertices vi and vj is the length of a shortest path joining them, if any : dij = min l(pij);  otherwise dij = (. A shortest path is often called a geodesic. The eccentricity of a vertex i, ecci, in a connected graph is the maximum distance 

between i and any vertex j of G: ecci = max dij. The radius of a graph, r(G), is the minimum eccentricity among all vertices i in G: r(G) = min ecci = min max dij. Conversely, the diameter of a graph, d(G), is the maximum eccentricity in G: d(G) = max ecci = max max dij . The set of all distances (i.e. geodesics) in G is denoted by D(G).
The detour, (ij, between two vertices vi and vj is the length of a longest path joining these vertices, if any : (ij = max l( pij);  otherwise (ij = (. The set of all detours (i.e. longest paths) in G is denoted by ((G).

 
In a connected graph, the distance and the detour are metrics, that is, for all vertices vi , vj and vk,
1. mij ( 0, with mij  = 0 if and only if vi = vj.

2. mij = mji 

3. mij + mik ( mjk
When l(pij) is expressed in number of edges, the distance is called topological distance; when it is measured in meters or submultiples:(nm, pm) it is a metric distance. Table 1.1 illustrates the two types of distances.




Table 1.1. Topological and Metric Distances
	Chemical

Compound
	Topological

Distance
	Metric Distance

(pm)

	CH3 - CH3
	1
	154

	CH2  = CH2
	1
	134

	CH ( CH
	1
	121


An invariant of a graph is a graph theoretical property, which is preserved by isomorphism.1 In other words, it remains unchanged, irrespective of the numbering or pictorial representation of G.

The degree, deg vi, (i.e. valency, sometimes denoted by k or ( ) of a vertex vi in G is the number of edges incident in vi.1 Since any edge has two endpoints, it contributes twice to the sum of degrees of vertices in G, such that 
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, a result which was the first theorem of graph theory (Euler, 1736).1 In a (N, Q) graph, 0 ( deg vi ( N-1, for any vertex vi. If all vertices have the same degree, k, the graph is called k-regular;  otherwise it is irregular (Figure 1.14). The 4-regular graph in Figure 1.14 is both an Eulerian and Hamiltonian graph.
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1.3. Chemical  Graphs

A chemical graph is a model of a chemical system, used to characterize the interactions among its components: atoms, bonds, groups of atoms or molecules. A structural formula of a chemical compound can be represented by a molecular graph, its vertices being atoms and edges corresponding to covalent bonds.

Usually hydrogen atoms are not depicted in which case we speak of hydrogen depleted molecular graphs. (Figure 1.15).
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The heavy atoms different from carbon (i.e. heteroatoms) can be represented, as shown in Figure 1.5. Similarly, a transform of a molecule (e.g. a chemical reaction) can be visualized by a reaction graph, whose vertices are chemical species and edges reaction pathways. Within this book, only molecular graphs are considered.
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    Figure 1.4.   Bigraphs                K1.3       	                                K2.3 		                            K3.3





Figure 1.5. Rooted graphs



Figure 1.6. Homeomorphs of tetrahedron



Figure 1.7.  A planar graph and its faces



Figure 1.8. A graph and its line graph



Figure 1.9. A graph and its complement



Figure 1.10. Two isomorphic graphs



Figure 1.11. A graph and one of its subgraphs



Figure 1.12. A graph and some of its spanning subgraphs



Figure 1.13.  Closed walk     path             trail	       cycle     Hamiltonian  Hamiltonian

								 path	       circuit



Figure 1.14. A regular and an irregular graph



Figure 1.15. A molecular graph and its hydrogen depleted representation
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