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Fragmental Property Indices

Chapter 7

Fragmental  Property  Indices

7.1.  Introduction


In the last decade, structural indices used in QSAR/QSPR (Quantitative Structure-Activity Relationships/ Quantitative Structure-Property Relationships) are rather calculated from steric/geometric and/or electrostatic/partial charges considerations1-3 than from (older) topological basis.4 In the view of a QSAR analysis, the set of molecules under study is somehow aligned.5 CoMFA method6 proposes an algorithm consisting of the following steps: (1) build a set of molecules with known activities and their 3D-structure (eventually obtain the 3D-structure from any specific program, such as: MOPAC, SYBYL,7,8 HyperChem,9,10 Alchemy2000,7  MolConn9,11); (2) align the set in the 3D space according to a chosen superimposing method (e.g., those maximizing the steric overlap of some fragments in the molecules,7,12,13 or those based on a pharmacophore theory14,15); (3) construct a grid of points surrounding the superposed molecules (in standard form6 or in modified form16); (4) atomic charges are then calculated for each molecule, at a chosen level of theory, (5) the fields: steric (Lennard-Jones), electrostatic (Coulomb16), hydrophobic (e.g., HINT),17 hydrogen-bond potential,18 molecular orbital field,19,20 or any other user-defined field21, are further calculated for each molecule by interaction with a probe atom8,21 at a series of grid points; (6) The resulting descriptors are correlated, by the use of partial least squares (PLS), with the chosen property. A cross-validation procedure will give the measure of the predictive ability of the model. The best results were obtained in a series of congeners but non-congeneric series were also investigated. 

CoMFA is a good tool in investigating a variety of biological activities, such as cytotoxicity,22 enzyme inhibition,19 binding properties.23-25 Moreover, CoMFA is ultimately used in drug design,14,26 eventually by searching for active substructures in a database. Modifications of the above discussed method were used in 3D-QSAR/QSPR studies.28-32


In this chapter a new approach, leading to a family of fragmental property indices, FPI, is proposed. These indices are calculated as local descriptors of some

fragments of the molecule and, a global index is then obtained by summing the fragmental contributions. This idea is implemented on a set of four models with four default properties, eight descriptors of property, five models of superposition, and four type of summative indices, resulting in 2560 indices for one method of breaking up.

7.2.  Formulas  for  Fragment  Calculation


The calculation of fragmental property indices starts with a decomposition of molecule into fragments (i.e., spanning subgraphs) corresponding to all pairs of vertices (i,j) in the molecule, i being the reference vertex (see below).


In Cluj fragmentation criteria, the path p joining the vertices i and j of the pair (i,j) play the central role in selecting the fragments. In cycle-containing graphs, more than one path could join the pair (i,j) thus resulting in more than one fragment referred to i. In such a fragmentation, the most frequently occurring fragments will bring the greatest contribution to a global value of the calculated index for the molecule. In Szeged fragmentation criteria, for each pair (i,j) results one fragment.


Before introducing the fragmental property indices some formulas for calculating the fragments are needed.


Recall that these fragments are entries in the Cluj and Szeged matrices, respectively (see Chap. 2). 


Let G = (V, E ) be a graph and  i, j ( V.  Let p = (i = v1, v2,...,v| p|-1 , v| p| = j) ( P(G)i,j be a path from i to j in G.

7.2.1 CJ and CF Fragments


Collections of maximal fragments of type CJ (
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           CXDySi,j    = {CXi,j,p(CXSi,j | p( P(G)i,j , p ( Y(G)}


     (7.2)

with the meaning for X, x, Y, y:

	X; x
	Y; y
	maximal fragment set

	X = J;  x = j
	Y = D;  y = i
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	Y = Δ;  y = e
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	X = F;  x = f
	Y = D;  y = i
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where Di is related to the distance dij while De to the detour (ij in the graph (see Chap. 1). 

More explicitly, the quantities in eq 7.2 (see also (2.37) and (2.42)) are:

   CJi,j,p  = {v |v(V(G); d(G)i,v < d(G)j,v;  and ( w(Wv,i, w( p = {i}; p(D(G) or ((G)}










     (7.3)

   CFi,j,p = {v |v(V(G); d(Gp)iv<d(Gp)j,v; Gp = G – p; p(D(G) or ((G) }











     (7.4)

where  d(Gp)iv and d(Gp)jv are distances measured in the spanning subgraph  Gp = G - p resulted by cutting off the path p except its endpoints. CJi,j,p and CFi,j,p represent fragments (connected or not) in G, constructed according to eqs (7.3) and (7.4) respectively, with respect to the endpoints  i and j of the path p. 

7.2.2 Sz Fragments


The Szeged fragments are constructed by the equations:

	SzDii,j   = {v| v( V(G);   d(G)v,i < d(G)v,j }
	   (7.5)

	SzDei,j  = {v | v( V(G);  ((G)v,i < ((G)v,j }
	(7.6)


Note that in the definition of the Szeged fragments, the path between the vertex i and vertex j is irrelevant.

7.3.  Fragmental  Property  Indices

7.3.1 Model Parameters


It is well known that the physical laws govern the natural phenomena. Macroscopic interactions are interactions of field-type. This means that the field is produced by a scalar function of potential. Let f(x, y, z) be a scalar function. This function induces a field given in terms of the gradient of f:
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    (7.7)


For the potential of type 


f(x, y, z) = pz







     (7.8)

and applying eq 7.7 we obtain the associated field of the form:
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This is the case of the well-known uniform gravitational field:
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the potential of which is given by 
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where m is the mass of probe and z is the reference coordinate.


Note that eq 7.9 is applicable not only to the Newtonian (gravitational) interactions but also to the Coulombian (electrostatic) interactions. In both cases the relation is valid if the mass M (or the charge Q) that generates the potential f and associated field
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  is far enough (r >> z) for the approximation 


(r + z)2/r2 = (r2 + 2rz + z2)/r2 = 1 + 2z/r + (z/r)2 ( 1

be applied in the equation of field produced by M or Q (see below).


For the potential of type:


f(x, y, z) = p/z 







   (7.12)

eq 7.7 leads to the associated field:
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This is the case of well-known (non-uniform) gravitational field given by:
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and the associated potential of the form:
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where m is mass of probe and r is the position relative to the location of the point that produces the field.


For the Coulombian field eq 7.13 becomes:



[image: image18.wmf]r

r

q

k

r

F

F

C

C

r

r

r

3

)

(

-

=

=








   (7.16)

and the potential associated to the Coulombian field:
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For fragmental property indices four models of interaction are implemented: two of them topological (dense topological and rare topological) and two others geometric (dense geometric and rare geometric). 


The models are related to two types of field interactions: one of weak dependence on distance for the potential of the type (7.8) generating a uniform field (7.9) and the second, of strong dependence on distance for the potential of the type (7.12) that generate a non-uniform field (7.13).


The variables in the models are metrics of distance d (topological dT and geometrical dE), property ( (mass M, electronegativity E, cardinality C, partial charge or any other atomic property P), property descriptor ( (p, d, pd, 1/p, 1/d, p/d, p/d2, p2/d2) and method of superposition ( (S, P, A, G, H).

Given rational numbers x1, …, xn, the (mathematical) superposition is
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The expressions for the property descriptors are:
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where p is any property (p ( ( ) and d is any metric of distance.


These variables are most frequently used in building of our models by the reasons:

- The expressions of the property descriptor ( simulate the most occurring physical interactions (e.g., p, pd, p/d, p/d2, p2/d2)33 and the most usual descriptor in topological and geometric models.34-36 The property descriptor is used either in the calculation of the vertex descriptor (when d is the distance from the vertex v to j and p is any atomic property) or in the evaluation of the fragment descriptor (when d is the distance between the center of property of the fragment and j, while p is a calculated fragment property).

- The (mathematical) superposition is applied upon a string of vertex descriptors for giving a fragment descriptor. Note that S = sum operator; P = product operator; A = arithmetic mean operator; G  =  geometric mean operator; H  =  harmonic sum operator. 

The summation is suitable in the case of any additive property (mass, volume, partial charges, electric capacities, etc.)37. The multiplication occurs in concurrent phenomena (probabilistically governed).38-40 The arithmetic mean is useful in evaluating some mean contributions (corresponding to some uniform probabilistic distribution).41,42 The geometric mean is used in calculating the group electronegativities.43,44 Finally, the harmonic sum is present in connection with the elastic forces, electric fields and group mobility in viscous media.45-47

7.3.2 Description of the Models


Let (i,j) be a pair of vertices and Fri,j any fragment referred to i with respect to j.

Dense Topological Model


Let v be a vertex in the fragment Fri,j. The vertex descriptor applies the property descriptor to the vertex property and topological distance 
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The j point can be conceived as an internal probe atom  (see the CoMFA approach). However, the chemical identity of j is not considered. 

Rare Topological Model


Within this model the global property results by superposing the vertex properties pv. The vertex descriptor applies the property descriptor to the global property and topological distance dT i,j. The global property descriptor models the interaction of the fragment Fri,j with the point j and the global property being  concentrated in the vertex i:


PD(
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Dense Geometric Model 


The global descriptor is the vector sum of the vertex vector descriptors. It applies the property descriptor to the vertex property pv and the Euclidean distance dE v,j in providing a point of equivalent (global) property located at the Euclidean distance dE CP,j 
(with dE CP,j being the distance of property). The global property descriptor vector has the orientation of this distance vector. The model simulates the interactions in non-uniform fields (gravitational, electrostatic, et al):
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or, in words, dE CP,j is the distance that satisfies: (( dE CP,j , P(
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Rare Geometric Model


The scalar global descriptor applies the property descriptor to the center of fragment property and Euclidean distance between this center and the vertex j. 

The model simulates the interactions in uniform fields (uniform gravitational, electrostatic, etc.):
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7.3.3 Fragmental Property Matrices


The fragmental property matrices are square matrices of the order N (i.e., the number of non-hydrogen atoms in the molecule). The non-diagonal entries in such matrices are fragmental properties, evaluated for the maximal fragments (equations 7.1-7.6) corresponding to a pair of vertices (i,j) by a chosen model. 


In Szeged criteria (eqs 7.5 and 7.6), the fragmentation related to the pair of vertices (i,j) results in a unique fragment Fri,j.

In case of Cluj criteria, the fragmentation can supply more than one maximal fragment for the pair (i,j). In such a case, the matrix entry is the arithmetic mean of the individual values.


Thus, if i, j in V(G), i ( j and Pi,j = {
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m be the number of maximal fragments (cf. eq 7.1) among all the k fragments, 1(m ( k, and let (1, …,(m  be the index for the maximal fragments.


Applying any of the equations 7.20-7.23 for all the m maximal fragments we obtain the following m values (for example, by eq 7.20):
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The matrix entry associated to the pair (i,j) is the mean value:
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The resulting matrices are in general unsymmetric but they can be symmetrized as shown in Chap. 2. The symbols for the fragmental property matrices will be detailed below.

7.3.4 Fragmental Property Indices


Fragmental property indices are calculated at any fragmental property matrices  given by eqs 7.20-7.24. Four types of index operators are defined: P_, P2, E_, E2 according to  the relations:


P_(M) = ½(([M]i,j                 ;
P2(M) = ½(([M]i,j[M]j,i; 


E_(M) = ½(([M]i,j [A]i,j   ;
E2(M) = ½(([M]i,j[M]j,i[A]i,j
   (7.25)

where M is any property matrix, symmetric or unsymmetric.

7.3.5 Symbolism of the Fragmental Property Matrices and Indices


The name of fragmental property matrices is of the general form:


ABcDdEfffffG







   (7.26)

where:


A ( {D, R}; D = Dense; R = Rare;


B ( {T, G}; T = Topological; G = Geometric;


c ( {f, j, s};  f = CF-type; j = CJ-type; s = Sz-type;


Dd ( {Di, De};  Di = Distance; De = Detour;


E ( ( (i.e., E({M, E, C, P} where M = mass; E = electronegativity; C = cardinality; P = other atomic property - implicitly, partial charge; explicitly, a property given by manual input);


fffff ( ( (i.e., fffff({__p__, _1/p_, __d__, _1/d_, _p.d_, _p/d_, _p/d2, p2/d2} with the known meaning given in eq 7.19);


G ( ( (i.e., G({S, P, A, G, H} with the known meaning from eq 7.18).


The name of fragmental property indices is of the general form:


ABcDdEfffffGii







   (7.27)

where:


ii ( {P_, P2, E_, E2} with the known meaning from eq 7.25.


If an operator, such as f(x)=1/x (inverse operator) or f(x)=ln(x), is applied the indices are labeled as follows:


lnABcDdEfffffGii :=
ln(ABcDdEfffffGii);



1/ABcDdEfffffGii :=
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For example, index lnDGfDeM__p__SP_ is the logarithm of index DGfDeM__p__SP_ computed on the property matrix DGfDeM__p__S. The model used is dense, geometric, on fragment of type CF, with the cutting path being detour. The chosen property is mass, the descriptor for property is even the property (mass) and the sum operator counts the vertex descriptors.

7.3.6 Some Particular Fragmental Property Models

           Let i, j be two vertices in V(G) and Fri,j any fragment referred to i with respect to j.
Fragmental Mass

           In evaluating the fragmental mass, the chosen property is ( = M, descriptor ( = p, superposition ( = S, and the model is rare topological, RT. The fragmental mass descriptor takes the form:


PD(Fri,j) = 
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It models the molecular mass of the fragment. The name of the associated property matrix is RTcDdM__p__S, with the known meaning for c and Dd. 

             If c = s and Dd = Di then RTsDiM__p__S, it models the molecular mass of the Szeged Distance Fragments (equation 7.5). If c = f and Dd = Di then the matrix RTfDiM__p__S collects mean values (see eq 7.24) of mass of all the fragments belonging to i (with respect to j) according to the CF criterion (eqs 7.1, 7.4 ).

Fragmental Electronegativity


The well known equalizing principle of electronegativity E, is here considered: the fragment electronegativity is the geometric mean of electronegativities of the s atoms joined to form that fragment (see also Section 7.3.1). 

Let the property (  = E (electronegativity); descriptor (  = p; superposition ( = G; the model is rare topological, RT. The fragmental electronegativity descriptor of Fri,j is:


PD(Fri,j)
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It models the electronegativity of the fragment. The name of the property matrix associated with it is RTcDdE__p__G . Note that Ev is the group electronegativity for vertex v calculated with formula:



[image: image60.wmf]å

=

G

Î

Õ

G

Î

v

j

v

j

v

b

j

j

v

b

j

a

v

E

E

)

,

(

)

,

(







   (7.31)

where b(v, j) is the conventional bond order between v and j (e.g., 1, 1.5, 2, 3 for single, aromatic, double and triple bonding, respectively), Ea is the atomic electronegativity (Sanderson) and j((v is any atom ( H atoms included) consisting the group (v.

Fragmental Numbers


The property ( = C (cardinality) was introduced for recovering some graph-theoretical quantities and/or graph theoretical analogue indices (see below). 


For descriptor ( = p, superposition ( = {P, A, G}, and the model rare topological, RT, the cardinal numbering descriptor of Fri,j is:


PD(Fri,j) =
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The arithmetic mean A, geometric mean G and product P applied to 1 (value for vertex property) leave it unchanged. The mean value for all fragments belonging to i vs. j (CJ and CF only) is also 1. All matrices RTcDdC__p__P, RTcDdC__p__A and RTcDdC__p__G have all their entries unity, except the main diagonal elements that are zero.

The indices RTcDdC__p__PP_, RTcDdC__p__AP_, RTcDdC__p__GP_  give the number of edges in the complete graph having the same number of vertices N, as the considered molecular graph: 


RTcDdC__p__PP_ = RTcDdC__p__AP_ = RTcDdC__p__GP_ = N(N - 1)/2
Similarly, the indices calculated on edge, RTcDdC__p__PE_, RTcDdC__p__AE_, RTcDdC__p__GE_ give the number of edges in the molecular structure.

Uniform Field Gravity

Let the property ( = M, descriptor ( = p/d2, superposition ( = S and rare geometrical model.

The uniform gravity descriptor of Fri,j is calculated by:


PD(Fri,j) =
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It models the value of the gravitational field induced by the fragment Fri,j in the point j. Values given by (7.33) are collected in the matrix RGsDdM_p/d2S while averaged  values are considered in RGfDdM_p/d2S and RGjDdM_p/d2S matrices.

Non-Uniform Field Gravity

Let the property ( = M, descriptor ( = p/d2, superposition ( = S and dense geometrical model. The distance (vs. j) of the center of equivalent fragmental gravity of Fri,j is:
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It models the distance at which a point mass equal to the fragment mass 
[image: image66.wmf]å

Î

j

i

Fr

v

v

M

,

 should

be located vs. j such that the gravitational field induced by Fri,j in j be equal to the field induced by all atoms of the fragment. The associated matrix is of the form DGcDdM_p/d2S.

Uniform Electrostatic field

Let the property (  = P (QP implicitly, in the Cluj Program), descriptor ( = p/d2, superposition (  = S and rare geometrical model. The uniform electrostatic field descriptor of Fri,j is:


PD(Fri,j) = 
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It models the value of electrostatic field induced by the fragment in j. The property matrix is of the form: RGcDdP_p/d2S.

Non-Uniform Electrostatic Field

For the property ( = P (QP implicitly), descriptor ( = p/d2, superposition (  = S and dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic field of Fri,j is:
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It models the distance at which a point charge equal to the fragment charge 
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be located vs. j such that the electrostatic field induced by it in j be equal to the field induced by the all atoms of the fragment. The associated matrix is of the form: DGcDdP_p/d2S.

Uniform Field Gravitational Potential

It is obtained for the property ( = M, descriptor ( = p/d, superposition ( = S and rare geometrical model. The property descriptor of Fri,j is:


PD(Fri,j) =
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It models the value of the gravitational potential induced by the fragment in j. The property matrix is of the form: RGcDdM_p/d_S.

Non-Uniform Field-Type Gravitational Potential

For the property (  = M; descriptor ( = p/d; superposition ( = S; dense geometrical model, the distance (vs. j) of the center of equivalent fragmental gravity of Fri,j is:
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It models the distance at which a point mass equal to the fragment mass (
[image: image76.wmf]å
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) should be located vs. j such that the gravitational potential induced by it in j be equal to the potential induced by the all atoms of the fragment. The associated matrix is of the form DGcDdM_p/d_S.

Uniform Field Coulombian Potential

It is obtained for the property (  = P (Qp implicitly), descriptor ( = p/d, superposition ( = S and rare geometrical model. The electrostatic potential descriptor of Fri,j is:


PD(Fri,j) =
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It models the value of the electrostatic potential induced by the fragment in j. The property matrix is of the form: RGcDdP_p/d_S.

Non-Uniform Field Electrostatic Potential

For the property ( = P (QP implicitly); descriptor ( = p/d; superposition ( = S and dense geometrical model, the distance (vs. j) of the center of equivalent electrostatic potential of Fri,j is:
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It models the distance at which a point charge equal to the fragment charge (
[image: image81.wmf]å
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should be located vs. j such that the electrostatic potential induced by it in j be equal to the potential induced by all the atoms of the fragment. The associated matrix is of the form DGcDdP_p/d_S.

Fragmental Numbers and Graph-Theoretical Matrices of CJ-, CF- and Sz -Type

Let the property ( = C, descriptor ( = p, superposition ( = S and rare topological model. Value of cardinal numbering descriptor for Fri,j is:


PD(Fri,j) =
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It models the number of atoms in the fragment. The associated matrices are of the form: RTcDdC__p__S. Note that these matrices are exactly the graph-theoretical matrices corresponding to the Cluj and Szeged criteria (see eqs 7.1-7.6):


RTfDiC__p__S =
[image: image84.wmf]CFD

;        RTfDeC__p__S =
[image: image85.wmf]CF

Δ



RTjDiC__p__S =
[image: image86.wmf]CJD

;         RTjDeC__p__S =
[image: image87.wmf]CJ

Δ


RTsDiC__p__S = 
[image: image88.wmf]SZD

;       RTsDeC__p__S​ =
[image: image89.wmf]SZ

Δ




In all the above presented models, j appears as a virtual probe atom . In the opposite to the CoMFA approach, whose descriptors are calculated as interactions of the molecule with external grid probe atoms, our approach makes use of internal probe atoms: the property of fragment Fri,j is viewed as the interaction of atoms forming the fragment Fri,j with the atom j (with no chemical identity, however). 

Model Degeneration and Computational Features


The degeneration in the above models may occur in cases when the values of property are not diverse enough, like is case of cardinality (see Fragmental Numbers, this Section). Another degeneration is in the case: RTfDiC__p__H = TfDiC_1/p_S. 


The fragmental analysis was made by the aid of four original 16-bit windows computer programs. First program, ClujTeor calculates topological descriptors of Cluj and Szeged type and generates the fragments for the molecules. Second, ClujProp calculates the fragmental properties. The third one, StatMon makes monovariate regressions and sorts indices according to the correlation score. The forth program, StatQ performs multi-linear regression (2-variate, 4-variate, etc.) and saves on disk the best couples of indices. The total number of indices is given by: 2560(see Sect. 7.1) ( 3(i.e., x, ln(x), 1/x) ( 3(i.e., the cutting methods: CJ, CF, Sz) ( 2(i.e., the path criteria: Di, De) = 46080. Note that in most cases, the degeneration induced by property values and operators lead to a total number of distinct indices around 19,000. In bivariate regression, the first 214-1=16383 indices recording the best scores in monovariate regression are considered.

7.4.  Study  of  Correlation


To illustrate the quality of the family of fragmental property indices in correlation a set of 17 chemical structures from the class of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones was selected.
7.4.1 Structure of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones


The structure of the selected chemical compounds is given in Figures 7.1.(a, b).
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Figure 7.1.a. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones;  molecules 1 to 9
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Figure 7.1.b. Structure of 17 substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones;

molecules 10 to 17.

7.4.2 Properties of substituted 3-(Phthalimidoalkyl)-pyrazolin-5-ones


The sum of one-electron energy calculated at the Extended-Huckel level was the first molecular property taken in correlation. A second molecular property was the biological activity of the above listed pyrazolin-5-ones, namely the inhibitory activity (in %) of a solution of 0.05 mg/ml pyrazolin-5-one on Lepidium sativum L. (Cresson). The The data are listed in Table 7.1.

Table 7.1. The Sum of One-Electron Energy Calculated at Single Point Semi-Empirical Extended-Huckel and the Inhibitory Activity on Lepidium sativum L. (Cresson) for 17 Substituted 3-(Pthalimidoalkyl)-Pyrazolin-5-Ones*

	No.
	Compound
	Energy

(kcal/mol)
	Inhibition (%)

(0.05 mg/ml)

	1
	Gly-Pyr
	-50978.12
	28.4

	2
	Gly-Pyr-O-Me
	-48531.44
	28.0

	3
	Gly-Pyr-1-N-Me
	-50863.04
	30.4

	4
	Gly-Pyr-2-N-Me
	-53416.95
	27.7

	5
	Gly-Pyr-Decarb
	-38604.68
	14.3

	6
	Gly-Ph-Pyr
	-62330.33
	68.3

	7
	Gly-Ph-Pyr-O-Me
	-64752.65
	49.4

	8
	Gly-Ph-Pyr-2-N-Me
	-64751.09
	65.2

	9
	Gly-Ph-Pyr-Decarb
	-38588.46
	46.9

	10
	Ala-Pyr
	-43209.47
	29.3

	11
	Ala-Pyr-O-Me
	-55729.99
	28.9

	12
	Ala-Pyr-1-N-Me
	-55832.12
	32.6

	13
	Ala-Pyr-Decarb
	-41020.54
	12.2

	14
	Ala-Pyr-1-N-Me-Decarb
	-43743.36
	18.2

	15
	Ala-Ph-Pyr
	-64701.39
	71.7

	16
	Ala-Ph-Pyr-O-Me
	-67104.63
	50.6

	17
	Gly-Pyr-1-N-Me-Decarb
	-41057.45
	15.1


* Values of inhibition are taken from ref.48 and values of energy are calculated by HyperChem program (HyperCube Inc.)
7.4.3 QSPR Analysis for Energy

7.4.3.1. Monovariate Regression for Energy

For the first five best indices in monovariate correlation, the equation of the model is:


Predicted energy = b0 + b1(lnIndex




(7.42)

The indices and their values are shown in Table 7.2.

Table 7.2 Values of the Best Five Indices in Monovariate Regression

	Index
	1
	2
	3
	4
	5

	Name
	DGjDeC_1/p_SP_
	DGfDeC_1/p_SP_
	DGjDiC_1/p_SP_
	RTsDiC_1/p_GP2
	RTsDiC__p__SP_

	r
	-0.999466
	-0.999463
	-0.999439
	-0.999414
	-0.999405

	b0
	89016.518
	89128.374
	89375.155
	89382.165
	81477.187

	b1
	-25198.270
	-25214.115
	-25150.194
	-25379.594
	-16830.753

	1
	257.98245
	258.17130
	263.03785
	253
	2644.0

	2
	235.67776
	235.86768
	240.61058
	231
	2296.5

	3
	262.04099
	262.37413
	268.90715
	253
	2644.0

	4
	287.68696
	287.93773
	296.79757
	276
	3001.0

	5
	155.73903
	155.92757
	159.59795
	153
	1233.5

	6
	414.86839
	415.11870
	425.81775
	406
	5376.5

	7
	445.15796
	445.41579
	456.60416
	435
	5953.5

	8
	448.66651
	448.91642
	460.66835
	435
	5941.5

	9
	156.12878
	156.32527
	160.50819
	153
	1233.5

	10
	193.88140
	194.13758
	197.96803
	190
	1691.0

	11
	312.32217
	312.59997
	321.23457
	300
	3406.0

	12
	312.17034
	312.44917
	321.26878
	300
	3390.0

	13
	174.41853
	174.62444
	178.39353
	171
	1449.0

	14
	194.01648
	194.23557
	198.60151
	190
	1702.0

	15
	444.70485
	444.96963
	455.79605
	435
	5946.0

	16
	476.02635
	476.29883
	487.62160
	465
	6560.0

	17
	174.26687
	174.46487
	178.66246
	171
	1461.0


The best single variable QSPR (boldface in Table 7.2) was


Predicted energy = 89016.5 ( 25198.3(lnDGjDeC_1/p_SP_

  (7.43)

Statistics for the best regression are given in Table 7.3.

Table 7.3. Statistics for eq 7.43

	
	r
	s
	F (1,15)
	t (15)
	p-level

	Intercept
	
	
	
	74.59
	.0000

	lnDGjDeC_1/p_SP_
	-0.999466
	338.5
	14046
	-118.5
	.0000


For the meaning of statistic parameters, the reader is invited to consult Chapter 9 of this book. 

Figure 7.2. shows the plot of the calculated energy (cf eq 7.43) vs. the natural logarithm of the DGjDeC_1/p_SP_ index.
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Figure 7.2. The best monovariate regression (cf eq 7.43)

Values of lnDGjDeC_1/p_SP_ , energy and predicted energy (cf eq 7.43) are included in Table 7.4.
Table 7.4 Regression Results: lnIndex, Energy and Predicted Energy, cf eq 7.43.

	No
	lnDGjDeC_1/p_SP_
	Energy
	Predicted Energy

	1
	5.55289
	-50978.12
	-50906.74219

	2
	5.46246
	-48531.44
	-48628.16016

	3
	5.56850
	-50863.04
	-51300.07031

	4
	5.66187
	-53416.95
	-53652.88281

	5
	5.04818
	-38604.68
	-38188.92969

	6
	6.02796
	-62330.33
	-62877.67969


Table 7.4 (Continued)
	7
	6.09843
	-64752.65
	-64653.34766

	8
	6.10628
	-64751.09
	-64851.17187

	9
	5.05068
	-38588.46
	-38251.91016

	10
	5.26725
	-43209.47
	-43708.98437

	11
	5.74403
	-55729.99
	-55723.23437

	12
	5.74355
	-55832.12
	-55710.98047

	13
	5.16146
	-41020.54
	-41043.28906

	14
	5.26794
	-43743.36
	-43726.53516

	15
	6.09741
	-64701.39
	-64627.68359

	16
	6.16547
	-67104.63
	-66342.74219

	17
	5.16059
	-41057.45
	-41021.36719


7.4.3.2. Bivariate Regression for Energy


The first 16383 indices in monovariate regression are input for bivariate correlation. The algorithm searches for the best correlation for every pair (i, j) of indices (1( i < j ( 16383), and writes on disk the new best found correlation.


Here, the first best found three pairs of indices for bivariate correlation. Indices are labeled with their monovariate rank score. The pairs are biv1(1, 11717), biv2(95, 1414) and biv3(108, 1383).


Case biv3(108,1383) was the best found correlation within the fragmental property  family.


Note that the best scored index in monovariate correlation is not present in the pair of best bivariate correlation (1({108,1383}). This fact suggests that the best scored index in monovariate correlation does not explain at the best the property, when coupled with another index belonging to the family. Selection of the pairs of indices for bivariate correlation must be done among all the set (1...16383). Experimental it is proved that there is no method less time consuming (such as an orthogonalization procedure) in obtaining the best scored pair of indices.


The bivariate scores are shown below:

biv1 (1 = lnDGjDeC_1/p_SP_, 11717 = lnRGsDeMp2/d2SE2)


biv1 = -25958.9(lnDGjDeC_1/p_SP_ + 1220.67(lnRGsDeMp2/d2SE2 + 80244.9











   (7.44)

Correlation coefficient:  Energy vs biv1, r  = 0.999570

Values of indices, energy and biv1 (predicted energy cf eq 7.44) are given in Table 7.5.

Table 7.5 Indices, Energy  and biv1 (Predicted Energy cf eq 7.44)

	No
	lnDGjDeC_1/p_SP_
	lnRGsDeMp2/d2SE2
	Energy
	biv1 

	1
	5.55289
	10.78950
	-50978.12
	-50731.59240

	2
	5.46246
	10.41587
	-48531.44
	-48840.30885

	3
	5.56850
	10.56440
	-50863.04
	-51411.57213

	4
	5.66187
	10.60332
	-53416.95
	-53787.89129

	5
	5.04818
	10.40413
	-38604.68
	-38100.29205

	6
	6.02796
	11.07533
	-62330.33
	-62714.98246

	7
	6.09843
	10.82098
	-64752.65
	-64854.73277

	8
	6.10628
	11.27766
	-64751.09
	-64501.06933

	9
	5.05068
	10.41900
	-38588.46
	-38588.46280

	10
	5.26725
	10.81842
	-43209.47
	-43281.26493

	11
	5.74404
	10.90985
	-55729.99
	-55546.56394

	12
	5.74355
	10.60678
	-55832.12
	-55903.89805

	13
	5.16146
	10.44110
	-41020.54
	-40995.68193

	14
	5.26794
	10.44431
	-43743.36
	-43756.00117

	15
	6.09741
	11.00936
	-64701.39
	-64598.33663

	16
	6.16547
	10.82029
	-67104.63
	-66595.96010

	17
	5.16059
	10.41325
	-41057.45
	-41007.09916


biv2 (95 = DTjDeP_1/d_SE_, 1414 = 1/DTsDiP__d__AE_)


biv2 = -385.13( DTjDeP_1/d_SE_ + 796417(1/DTsDiP__d__AE_ - 37166











   (7.45)

Correlation coefficient:  energy vs biv2, r = 0.999884

Values of indices, energy and biv2 (predicted energy cf eq 7.45) are given in Table 7.6.

Table 7.6 Indices, Energy  and biv2 (Predicted Energy cf eq 7.45)

	No
	DTjDeP_1/d_SE_
	1/DTsDiP__d__AE_
	Energy
	biv2

	1
	59.70321
	0.01174
	-50978.12
	-50813.46614

	2
	55.55278
	0.01270
	-48531.44
	-48448.36827

	3
	59.70321
	0.01174
	-50863.04
	-50813.46614

	4
	64.99726
	0.01129
	-53416.95
	-53207.83788

	5
	38.10040
	0.01653
	-38604.68
	-38673.81954

	6
	81.74904
	0.00801
	-62330.33
	-62268.72347

	7
	87.25182
	0.00776
	-64752.65
	-64592.17922

	8
	88.15976
	0.00786
	-64751.09
	-64855.46663

	9
	38.10040
	0.01653
	-38588.46
	-38588.43460

	10
	47.66825
	0.01510
	-43209.47
	-43496.59129

	11
	70.34408
	0.01082
	-55729.99
	-55640.48566

	12
	70.83694
	0.01093
	-55832.12
	-55742.02042

	13
	43.00040
	0.01598
	-41020.54
	-41002.88913

	14
	47.31508
	0.01481
	-43743.36
	-43593.46139

	15
	88.34726
	0.00788
	-64701.39
	-64917.41882

	16
	94.01670
	0.00763
	-67104.63
	-67299.73910

	17
	42.21508
	0.01527
	-41057.45
	-41261.34229


biv3 (108 = RTfDeM_p/d2SP_, 1383 = 1/DTsDeE_1/p_SE_)


biv3 = -54.019( RTfDeM_p/d2SP_ + 697864.87(1/DTsDeE_1/p_SE_ - 43266.3











   (7.46)

Correlation coefficient:  energy vs biv3, r = 0.999934

Values of indices, energy and biv3 (predicted energy cf eq 7.46) are given in Table 7.7.

    Table 7.7. Indices, Energy  and biv3 (Predicted Energy cf eq 7.46)

	No
	RTfDeM_p/d2SP_
	1/DTsDeE_1/p_SE_
	Energy
	biv3

	1
	291.65807
	0.01169
	-50978.12
	-50861.14698

	2
	253.84179
	0.01204
	-48531.44
	-48578.47928

	3
	286.32871
	0.01101
	-50863.04
	-51050.62598

	4
	318.26541
	0.01013
	-53416.95
	-53390.70245

	5
	141.99293
	0.01752
	-38604.68
	-38707.64398

	6
	435.14085
	0.00641
	-62330.33
	-62302.08286

	7
	475.71099
	0.00600
	-64752.65
	-64773.71407

	8
	475.03007
	0.00600
	-64751.09
	-64737.52944

	9
	141.99293
	0.01752
	-38588.46
	-38588.45484

	10
	195.34755
	0.01526
	-43209.47
	-43166.88331

	11
	358.32197
	0.00986
	-55729.99
	-55742.37228

	12
	349.41745
	0.00932
	-55832.12
	-55639.52197

	13
	164.77147
	0.01577
	-41020.54
	-41162.38985

	14
	188.35158
	0.01428
	-43743.36
	-43476.32911

	15
	474.16792
	0.00599
	-64701.39
	-64698.52071

	16
	516.35251
	0.00563
	-67104.63
	-67231.41652

	17
	164.07111
	0.01579
	-41057.45
	-41107.89635


Figure 7.3. illustrates the plot of energy (quantum mechanically calculated) vs biv3 (predicted energy cf eq 7.46). 
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Figure 7.3. The plot: energy vs biv3 (predicted energy cf eq 7.46) 

Statistics for the regression: energy vs biv3 are given in Table 7.8.

Table 7.8 Statistics for the Regression: Energy vs biv3

	
	r
	s
	F(1,15)
	t(15)
	p-level

	Intercept
	
	
	
	-0.0000
	1.0000

	biv3
	0.99993
	119.14
	113500
	336.904
	0.0000


7.4.3.3. Conclusions to Energy Analysis


1. The best index in monovariate regression does not provide the best explanation for the measured property when coupled (in a bivariate correlation) with any other index belonging to the discussed family.


2. The best bivariate correlation is not obtained as the best orthogonal indices, (see the Randić's DCA, Section 9.6.)  but only as the best couple of indices, resulted by the trial of the whole family.


3. The constant high correlation (r > 0.999) between the best indices and the quantum mechanically calculated energy provided by the semi-empirical Extended-Huckel approach demonstrates the quantum nature of FPI.


4. Sum of one-electron-energies for the set of 17 molecules is best modeled by biv3 (i.e., the calculated energy by eq 7.46).


5. An insight of eq 7.46 (i.e., biv3), reveals the dependency of this energy by the molecular topology (topological models) and the nature of atoms (mass and electronegativity).


6. Let ( abs(b1(x1)/(( (abs(b1(x1) + (abs(b2(x2)) be a measure of individual contribution of indices in variation of biv3. The value given by

( |-54(RTfDeM_p/d2SP_|/(( |-54(RTfDeM_p/d2SP_|+( |697864(1/DTsDeE_1/p_SE_|) = 0.68035
says that about 68% sum of one-electron-energy is a measure of field (p/d2 in the expression of RTfDeM_p/d2SP_). 


7. The preferred operator in monovariate regression is ln (all the best 5 indices, see eq 7.42 and Table 7.2).

7.4.4. QSAR Analysis for Inhibition

7.4.4.1. Monovariate Regression for Inhibition

For the first seven best indices in monovariate regression, the equation of the model is:


Predicted inhibition = b0 + b1(Index




   (7.47)

the index values of which are shown in Table 7.9 and statistics in Table 7.10.

The best monovariate QSAR was

Predicted inhibition = -194.68 + 0.003370(RGsDeCp2/d2SE2

   (7.48)
Statistics for the best scored index RGsDeCp2/d2SE2 (cf eq 7.48) are given in Table 7.11.

Table 7.9 Inhibition and Values of the Best Seven Indices 

in Monovariate Regression

	No
	Inhib
	1
	2
	3
	4
	5
	6
	7

	1
	28.4
	64089
	11.068
	1.5603E-05
	-345.37
	82.636
	4775.5
	637.31

	2
	28
	64448
	11.074
	1.5516E-05
	-221.58
	76.173
	3596.9
	569.26

	3
	30.4
	68490
	11.134
	1.4601E-05
	-286.06
	84.060
	4846.4
	772.27

	4
	27.7
	65346
	11.087
	1.5303E-05
	-213.29
	105.128
	6000.1
	966.24

	5
	14.3
	64947
	11.081
	1.5397E-05
	-161.27
	77.538
	3085.2
	491.68

	6
	68.3
	77978
	11.264
	1.2824E-05
	-538.20
	154.502
	13086.9
	1807.18

	7
	49.4
	72755
	11.195
	1.3745E-05
	-455.55
	116.674
	8640.4
	1314.55

	8
	65.2
	77294
	11.255
	1.2938E-05
	-588.78
	143.425
	11578.5
	1742.13

	9
	46.9
	65165
	11.085
	1.5346E-05
	-255.93
	78.655
	3166.4
	504.32

	10
	29.3
	65341
	11.087
	1.5304E-05
	-278.17
	85.016
	4816.9
	643.25

	11
	28.9
	65547
	11.091
	1.5256E-05
	-186.94
	96.383
	7273.2
	1037.66

	12
	32.6
	66652
	11.107
	1.5003E-05
	-272.94
	91.621
	6019.0
	970.02

	13
	12.2
	65588
	11.091
	1.5247E-05
	-229.75
	79.968
	3410.3
	546.83

	14
	18.2
	65333
	11.087
	1.5306E-05
	-147.46
	78.974
	3586.2
	574.37

	15
	71.7
	77537
	11.259
	1.2897E-05
	-643.15
	140.442
	11386.1
	1669.85

	16
	50.6
	73461
	11.205
	1.3613E-05
	-648.32
	112.870
	8445.2
	1320.70

	17
	15.1
	65119
	11.084
	1.5356E-05
	-102.56
	77.259
	3264.8
	520.13


Table 7.10 Name of the Best Seven Indices and their Monovariate Correlation

	No
	Index
	r
	b0
	b1

	1
	RGsDeCp2/d2SE2
	0.899523
	-194.68
	0.003370

	2
	lnRGsDeCp2/d2SE2
	0.897333
	-2612.4
	237.92

	3
	1/RGsDeCp2/d2SE2
	0.894772
	281.7
	-16741138.9

	4
	DGjDiP_p/d_AP_
	0.894351
	4.9767
	-0.095527

	5
	RGsDeM_p/d2SE_
	0.888106
	-28.384
	0.654080

	6
	RGsDeEp2/d2SE_
	0.887772
	3.6751
	0.005184

	7
	RGsDeMp2/d2SE_
	0.885762
	1.8078
	0.036454


Table 7.11 Statistics for the Best Scored Index RGsDeCp2/d2SE2 (cf eq 7.48).

	
	r
	s
	F(1,15)
	t(15)
	p-level

	Intercept
	
	
	
	-6.704
	.000007

	RGsDeCp2/d2SE2
	0.89952
	8.591
	63.59
	7.975
	.000001



The plot of the inhibition vs. the index RGsDeCp2/d2SE2 is shown in Figure 7.4.
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Figure 7.4 Monovariate regression best predicted inhibition

7.4.4.2. Bivariate Regression for Inhibition


The first best found three pairs of indices in bivariate correlation are presented. Indices are labeled with their monovariate scores. The pairs are: biv1(1, 11961), biv2(235, 4052) and biv3(235, 7783). The second index for the bivariate correlation was chosen  from the 1..16383 best scored monovariate indices.


The case biv3(235, 7783) was the best found correlation in the algorithm selection. For algorithm details see section Bivariate Regression for Energy. 

Note that, as in the case of energy, the best scored index in monovariate correlation is not present in the pair of best bivariate correlation (1({235, 7783}). Selection of pairs of indices for bivariate correlation must be done among all the family (1...16383).

The bivariate correlations are as follows:
biv1 (1 = RGsDeCp2/d2SE2, 11961 = 1/DGjDeP_p/d2GE2)

biv1 = 0.003054(RGsDeCp2/d2SE2 ( 1719.3(1/DGjDeP_p/d2GE2 ( 138.6










(7.49)

Correlation coefficient:  inhibition vs biv1, r = 0.988830

Table 7.12 Values of Indices, Inhibition and biv1 (Predicted Inhibition, cf eq 7.49).

	No
	RGsDeCp2/d2SE2
	DGjDeP_p/d2GE2
	Inhibition
	biv1 

	1
	64088.68725
	55.64699
	28.4
	26.265

	2
	64447.53674
	64.68759
	28.0
	31.679

	3
	68490.38729
	43.68903
	30.4
	31.253

	4
	65345.82007
	52.33072
	27.7
	28.147

	5
	64947.11517
	37.00776
	14.3
	13.326

	6
	77978.39585
	52.22715
	68.3
	66.667

	7
	72755.40201
	52.00063
	49.4
	50.570

	8
	77293.73666
	52.54815
	65.2
	64.776

	9
	65165.30346
	40.14345
	46.9
	46.900

	10
	65340.85566
	48.57654
	29.3
	25.593

	11
	65546.50225
	48.61544
	28.9
	26.249

	12
	66652.22261
	51.43069
	32.6
	31.562

	13
	65587.90626
	38.58451
	12.2
	17.182

	14
	65332.92136
	38.58311
	18.2
	16.401

	15
	77536.67347
	57.10956
	71.7
	68.132

	16
	73460.71348
	59.88603
	50.6
	57.078

	17
	65119.29156
	38.30207
	15.1
	15.422


biv2 (235 = DGsDiPp2/d2SE2, 4052 = lnDTsDiE_p/d_HE2)


biv2 = 0.775( DGsDiPp2/d2SE2 + -30.994(lnDTsDiE_p/d_HE2 + 30.782











(7.50)

Correlation coefficient:  inhibition vs biv2, r = 0.993240

biv3 (235 = DGsDiPp2/d2SE2, 7783 = lnRGsDiEp2/d2HE2)


biv3 = 0.9372( DGsDiPp2/d2SE2 – 10.058(lnRGsDiEp2/d2HE2 + 14.488











(7.51)

Correlation coefficient:  inhibition vs biv3, r = 0.993770
Table 7.13. Values of Indices, Inhibition, biv2 (Predicted Inhibition, cf eq  7.50)

and  biv3 (Predicted Inhibition, cf eq  7.51).

	No
	DGsDiPp2/d2SE2
	DTsDiE_p/d_HE2
	RGsDiEp2/d2HE2
	Inhibition
	biv2
	biv3

	1
	-14.80225
	0.78665
	0.05815
	28.4
	26.748
	29.229

	2
	-16.55124
	0.79529
	0.05973
	28.0
	25.054
	27.321

	3
	-15.07688
	0.71684
	0.07599
	30.4
	29.416
	26.281

	4
	-12.22525
	0.69343
	0.06758
	27.7
	32.655
	30.133

	5
	-17.15632
	1.20376
	0.29558
	14.3
	11.738
	10.668

	6
	14.24503
	0.45129
	0.02181
	68.3
	66.482
	66.317

	7
	-3.66908
	0.44415
	0.01870
	49.4
	53.093
	51.078

	8
	15.21789
	0.49053
	0.03332
	65.2
	64.652
	62.966

	9
	-16.87848
	1.20376
	0.27948
	46.9
	46.903
	46.902

	10
	2.91247
	1.17026
	0.35940
	29.3
	28.167
	27.511

	11
	-10.87153
	0.79379
	0.07637
	28.9
	29.514
	30.172

	12
	-11.10275
	0.73055
	0.06304
	32.6
	31.909
	31.885

	13
	-13.62422
	1.27247
	0.30716
	12.2
	12.755
	13.592

	14
	-15.50583
	1.03057
	0.13654
	18.2
	17.832
	19.984

	15
	22.24726
	0.49099
	0.02304
	71.7
	70.071
	73.268

	16
	-1.97165
	0.48236
	0.02024
	50.6
	51.851
	51.871

	17
	-17.44972
	0.96513
	0.13847
	15.1
	18.359
	18.021


The plot of inhibition vs biv3 (predicted inhibition cf eq 7.51) is shown in Figure 7.5.
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Figure 7.5. The plot: inhibition vs biv3 (predicted inhibition cf eq 7.51) 

Statistics for the regression: inhibition vs biv3 (predicted inhibition cf eq 7.51) are given in Table 7.14.

Table 7.14. Statistics for the Regression: Inhibition vs biv3

	
	r
	s
	F(1,15)
	t(15)
	p-level

	Intercept
	
	
	
	0.00031
	.9997

	biv3
	0.99377
	2.19
	1193
	34.54
	.0000


7.4.4.3. Conclusions to Inhibition Analysis

1. The best index in monovariate regression does not offer the best explanation for the measured property when coupled  with any other index belonging to this family in a bivariate correlation.


2. The best bivariate correlation is the best couple of indices, resulted by the trial in the whole family of fragmental property indices.


3. The constant high correlation (r > 0.88) between the best indices and the mitodepressive activity on Lepidium Savitium L. (Cresson) demonstrate ability of this family of indices to estimate the biological activity of the considered set of chemical structures.


4. An inspection onto eq 7.51 suggests that the mitodepressive activity on Lepidium Savitium L. (Cresson)  is dependent on the  geometric feature of molecules, the nature of atoms (electronegativity) and the electrostatic field of atoms induced by their partial charges.


5. The geometric models are dominant both in monovariate and bivariate regression (7 of the best 7 among the monovariate regressions and 5 of the best 6 in the bivariate regressions).

7.4.5. Correlation between Energy and Inhibition


The plot: inhibition vs energy (Figure 7.6) reveals that between the two properties no good correlation exists: r = 0.77898363. It implies that these properties cannot be modeled by the same indices. Our results clearly showed that the inhibition is best modeled by geometric models whereas topological models better describe the energy.
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Figure 7.6. The plot: inhibition vs. energy (quantum mechanically calculated – see text).


The low correlation between inhibition and the sum of one-electron energy demonstrates that the inhibition is not dependent on the energy.

7.4.6. General Conclusions to Correlating Studies

1. Fragmental property indices take into account the chemical nature of atoms (mass and electronegativity), various kinds of interactions between the fragments of molecules and the 3D geometry of molecular structures.


2. There exist an analogy between CoMFA and FPI: both of them calculate the interaction of a chemical structure (or substructure) with a probe atom in the 3D space. The property of fragment Fri,j is viewed as the interaction of atoms forming the fragment Fri,j with the atom j . The major difference is that CoMFA uses external probe atoms (with 

defined chemical identity) whereas FPI considers internal probe atoms with no chemical identity. Only the fragments (i.e., substructures) are chemically well defined.


3. Bivariate correlations with indices belonging to the fragmental property index family can offer good quality models for quite diverse molecular properties such as the inhibition of mitodepressive activity on Lepidium Savitium L. (r > 0.99) as well as the sum of one-electron energy calculated at the Extended-Huckel level (r > 0.9999).  These results demonstrate the correlating ability of this family of indices.


4. The best couple of indices are found by performing all combinations of two indices bivariate regressions within the family. At such a large pool of indices, the two-dimensional description (i.e., bivariate correlation), providing a direct structural interpretation of a molecular property, appears to be one of the most powerful methods in the characterization of molecular structures.
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