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Polynomials i
n  Chemical  Graph  Theory


Chapter 3

 POLYNOMIALS  IN  CHEMICAL  GRAPH  THEORY

3.1.  Introduction

Why Polynomials?

            There are two main routes by which polynomials enter into chemical graph heory.  

First, in quantum chemistry, the (approximate) solution of the Schrödinger equation:
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is usually reduced to the finding of eigenvalues and eigenvectors of the so-called Hamiltonian matrix (which, in turn, is the Hamiltonian operator 
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 represented within some finite vector basis). Now, if H is such a Hamiltonian matrix, then its eigenvalues are approximately equal to the energies E1, E2, E3,..., occurring in eq 3.1. These eigenvalues are the solutions of the so-called secular equation 
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where I stands for the unit matrix of a pertinent order.  The left hand side of (3.2), namely
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is just a polynomial in the indeterminate ε. The degree of this polynomial (N) is equal to the dimension of the vector space in which the Hamiltonian operator 
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 is represented, and is also equal to the order of the Hamiltonian matrix H.


In quite a few approximations encountered in quantum chemistry, the Hamiltonian matrix is somehow related to a molecular graph. The best known, and simplest, example is found in the Hückel molecular orbital theory:

H = (H MO(I + (H MO(A(G)

where A(G) is the adjacency matrix of a pertinently constructed skeleton graph (often called “Hückel graph”, representing the (-electron network of a conjugated hydrocarbon, 1-3 whereas αH MO and βH MO are parameters of the Hückel theory (not to be confused with the polynomials ( and ( considered in the later parts of this chapter). In this case the polynomial (3.3) is equal to
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the non-trivial part of which is
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	(3.4)


with the indeterminate ( standing instead of ((-(H MO)/(H MO. The polynomial (3.4) is called the characteristic polynomial of the graph G. It is certainly the most popular and most extensively studied graph polynomial in chemical graph theory.


Consider, as an example, the graph G3.1 depicted in Figure 3.1. It has eight vertices (N = 8, labeled by 1, 2, …, 8) and seven edges (m = 7, labeled by a, b, …, g). Then
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Either by direct expansion of this determinant or (better) by some of the numerous known techniques for the calculation of the characteristic polynomial (see below) it is not too difficult to obtain:
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It is then an easy exercise in calculus to find the zeros of this polynomial, namely the roots of the equation 
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Figure 3.1. Examples illustrating the unusual connections between molecular graph, 

revealed by means of graph polynomials; for details see text

Various modifications of ( have been put forward in the chemical literature, for instance the matching polynomial, 4-9 the (-polynomial 10-12 and the (-polynomial, 13-15 defined and discussed at a later point. These could be understood as the constituents of the secular equations, eq 3.3, of some, appropriately modified, Hamiltonian operators.
Instead of the determinant in eq. 3.4, some authors considered the analogous expression with the permanent 16, 17 - the permanental polynomial. Recently a more the general class of so-called immanantal polynomials attracted the attention of researchers, 18-20 of which the characteristic and the permanental polynomials are special cases.

Second, in numerous, both chemical and non-chemical, applications of graph theory one often encounters finite sequences of certain graph invariants, all associated to the same graph. Suppose C = (C0, C1, C2, …, Cp) is such a sequence. Then instead of p+1 distinct quantities Ck, k = 0, 1, 2, …p, one could introduce a single quantity - a polynomial - defined as

	Cp(p + … + C2(2 + C1( +C0  ( 
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Needless to say that (3.7) is not the only possible form which a polynomial associated with the sequences C may be given. 

  
The polynomial (3.7) contains precisely the same information as the sequence C. In some cases, however, it is easier to work with a polynomial than with a sequence. In some other cases, certain collective properties of the invariants considered, namely properties which can be deduced only by simultaneously taking into account the values of all Ck, k = 0, 1, 2, …, p, are in a natural way deduced from the polynomial. To say the same in a more direct way: there are collective properties of sequences of graph invariants which hardly ever would be discovered without analyzing graph polynomials of the form (3.7).


To illustrate the above, consider so-called independent edge sets of the graph G3.1 (see Figure 3.1). A collection of edges of a graph is said to be independent if no two edges have a vertex in common. It is reasonable to classify the independent edge sets according to the number of edges they contain. In the case of G3.1 no four edges are independent (and therefore there are no independent edge sets with more than three edges). There are four distinct independent edge sets containing 3 edges:

                {a, d, f} {a, d, g} {b, d, f} {b, d, g}

and thirteen such sets containing 2 edges:





{a, d} {a, e} {a, f} {a, g} 





{b, d} {b, e} {b, f} {b, g} 





{c, e}  {c, f} {c, g} {d, f}





{d, g}

Formally speaking, each set containing a single edge is also an independent edge set. Clearly, G3.1 has seven such sets. The empty set may be viewed as a independent edge set (of any graph) with zero edges; this set is unique.

Denote by m(G, k) the number of k-element independent edge sets of the graph G. Then m(G3.1, 0) = 1, m(G3.1, 1) = 7, m(G3.1, 2) = 13, m(G3.1, 3) = 4, m(G3.1, 5) = 0, m(G3.1, 6) = 0, m(G3.1, 7) = 0, etc. The sequence thus obtained is infinite, but it is reasonable to end it at the value of k for which m(G, k) ( 0, m(G, k+1) = 0. We thus arrive at a finite sequence (1, 7, 13, 4) which by (3.7) is transformed into the cubic polynomial

	Q(G3.1, () = 1 + 7( + 13(2 + 4(3
	(3.8)


When a graphic polynomial is defined as in the above example, then it is fully obscure whether its zeros have any distinguished property. Yet, all the (three) zeros of the above polynomial are negative, real-valued numbers (which the readers could check relatively easily). The same collective property of the sequence (m(G,k), k = 0, 1, 2, …) holds in the case of all graphs G: the zeros of all polynomials of the form

	Q(G) = Q(G,() = 
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	(3.9)


are negative, real-valued numbers. 

At a later point we shall see that the zeros of this graph polynomials are quite important in theoretical chemistry.


Q(G,(), (3.9), has been introduced by Hosoya 21 and called Z-counting polynomial.

More Motivations for Graph Polynomials 


Some properties of the graph polynomials are trivial and obvious. For instance, such is the fact that the value of the Z-counting polynomial, eq 3.9, at ( =1 is equal to the Hosoya topological index Z. Recall that this topological index is just defined as:
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The fact that the zeros of ((G3.1,(), eq 3.6, occur in pairs (x, -x) is a manifestation of one of the first general results of chemical graph theory ever obtained - the famous Coulson-Rushbrooke pairing theorem. 22, 23 Although far from being a trivial feature, the pairing of the numbers  (3.6) should be no surprise to a reader of this book.


In many instances, however, by means of graph polynomials some quite unusual connections between (molecular) graphs can be envisaged. We illustrate this by a few examples.

The polynomial (3.5) can be factorized as:

((G3.1,() = ((4 - 4(2)((4 - 3(2 + 1)

Each of these factors is a characteristic polynomial itself: ((4 - 4(2) is the characteristic polynomial of the 4-membered cycle, C4, see Figure 3.1, whereas (4 - 3(2  + 1 is the characteristic polynomial of the path graph with 4 vertices, P4, see Figure 3.1. As a consequence, the set of eigenvalues of G3.1, eq 3.6, is just the union of the set of eigenvalues of C4 and P4. The eigenvalues of C4 are +2, -2, 0 & 0. The eigenvalues of P4 are 
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           This observations is, in fact, a special case (for N = 4) of a more general result: 24-26

	((XN, () = ((C4,()((PN,()
	(3.10)


From eq 3.10, we see that the two-component graph consisting of a copy of C4 and a copy of PN has the same characteristic polynomial as the graph XN. Thus we encountered an infinite family of pairs of non-isomorphic graphs with coinciding characteristic polynomials. (With regard to this so-called isospectrality property of graphs, which is not duly discussed in this chapter, see Refs. 27-30).


It is somewhat less obvious that the polynomials (3.5) and (3.8) are closely related. Indeed, for i = 
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is equal to the Z-counting polynomial, eq 3.8. An analogous result holds for all n-vertex acyclic graphs: 31
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                (3.11)


A still less obvious result is that Q(G3.1,1) = 1+7+13+4 = 25 is equal to the number of Kekulé structures of the benzenoid hydrocarbon G3.2, shown in Figure 3.1. This, again, is a special case of a more general finding:32 The sextet polynomial of every unbranched catacondensed benzenoid molecule coincides with the Z-counting polynomial of a certain graph (called Gutman tree).33, 34 Because the sum of the coefficients of the sextet polynomial is equal to the Kekulé structure count, 35-38 it follows that the Hosoya index of the Gutman tree is equal to the number of Kekulé structures of the corresponding benzenoid system; in our example, G3.1 is the Gutman tree of the benzenoid hydrocarbon G3.2. More details can be found elsewhere. 39, 40

If we combine all the above examples, then we arrive at the fully unexpected conclusion that the number of Kekulé structures of the benzenoid hydrocarbon G3.2 can be computed from the characteristic polynomials of the cycle C4 and the path graph P4, both of which are determinants of order four.

Chemical graph theory is full of such unusual connections, which are not only useful and stimulating for the underlying chemical theories, but also represent a great satisfaction to those who work on them. Since relations of this kind are continuously being discovered until the most recent times, there is no danger that this field of research has been exhausted. 

Concerning Bibliography 


Before starting with the discussion on some particular polynomials of interest in chemical graph theory, a few words should be said about the published scientific works in this field. They are legion!


Producing a complete or, at least, nearly complete bibliography of papers dealing with graph polynomials would hardly be a feasible task. Such a bibliography would have to include many thousands of articles, published in journals devoted to chemistry, mathematics, physics, computer sciences, engineering, medicine, pharmacology, environmental sciences, … . The references given at the end of this chapter, although quite numerous, are intended only to mention a few (perhaps most significant) articles, reviews and books, and to direct the interested reader towards a more 

extensive literature search.


Many books are either fully or to a great extent concerned with graph polynomials, primarily with the characteristic polynomial (both ordinary and Laplacian). 1-3, 39, 41-55 Of the reviews dealing with graph polynomials we mention a few. 20, 33, 34, 40, 56-77 Many of these books and reviews contain tables of graph polynomials and/or their zeros; additional tables are found Refs. 78-83. An almost complete list of mathematical papers concerned with the characteristic polynomial of graphs has been collected in the book 42 and was eventually updated. 46
Details Omitted

The amount of material presented in this section had to be drastically limited (otherwise the text on graph polynomials would embrace several thick volumes). Therefore some topics, intimately related to graph polynomials are here abandoned. These are the following:

· Chemical theories in which graph polynomials find applications are not outlined.

· Applications of graph polynomials in various fields of chemistry, physical chemistry and physics are either not discussed at all, or are mentioned briefly, without going into any detail.

· The extensively developed theory of graph eigenvalues (both regular and Laplacian) is almost completely omitted. The same applies to graph eigenvectors

· Not all chemically interesting graph polynomials, but only a selection thereof, is considered. Only the most important properties of these polynomials are stated and, sometimes, illustrated by examples. In not a single case a mathematical proof of these properties is given.

· Only a limited number of algorithms for the calculation of the graph polynomials is presented.

· The theory of cospectral, comatching, etc. graph (namely families of graphs having equal characteristic, matching, etc. polynomials) is not elaborated, in spite of the enormous work done on this problem; some characteristic results in this field are communicated in Refs. 27-30, 84, 85.

· Also not mentioned is the work on spectral moments. The kth spectral moment of a graph is the sum of the kth powers of the zeros of the characteristic polynomial. By means of the classic Newton identities, from the spectral moments one can compute the coefficients of the characteristic polynomial, and vice versa; for details see, for instance, Appendix 4 in the book. 44

The authors believe that all these shortcomings are compensated by quoting literature sources from which the interested reader can get information on the details omitted.
3.2. The  Characteristic  Polynomial.  Part 1.


The characteristic polynomial, denoted by ((G, () or ((G), is defined via eq 3.4. It is certainly the most extensively studied graph polynomial, both in mathematics and in chemical graph theory. Its theory has been reviewed on countless places (e. g. see Refs. 1, 3, 42, 43, 44, 48, 49, 51, 56, 57, 60, 68, 73, 75, 86, 87). Its popularity among mathematical chemists comes from the fact (first observed by Günthard and Primas 88 in 1956) that the Hamiltonian matrix of the Hückel molecular orbital (HMO) theory is a simple linear function of the adjacency matrix of the corresponding molecular graph G.1, 3, 43, 48, 56, 75, 86, 87 Consequently, each HMO (-electron energy level is a linear function of the corresponding zero of the characteristic polynomial of G.


It is less well known that Heilbronner at al. have developed a theory 89, 90 in which the zeros of the characteristic polynomial of the line graph of the hydrogen-filled molecular graph are in a linear manner related to the (-electron energy levels of the corresponding saturated hydrocarbon. (Recall that in hydrogen-filled molecular graphs vertices represent both carbon and hydrogen atoms).

The Harary Theorem


Let G be a graph on N vertices. Then its characteristic polynomial ((G) is of degree N and can be written as:
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   (3.12)

Hence a0(G), a1(G), a2(G), …, aN (G) are the coefficients of the characteristic polynomial of the graph G. For all graphs, a0(G) = 1.

The central result in the theory of the characteristic polynomial is the Harary theorem. It determines how ak(G), k = 1, 2, …, N, depend on the structure of the graph G.


First a few historical remarks.


Many authors have tried to express the dependence of the coefficients ak on the structure of the underlying graph. The best known among these (unsuccessful) attempts are that of Samuel 91 in 1949 and Coulson 92 in 1950. The structure-dependency of the determinant of the adjacency matrix of a graph was discovered by Frank Harary 93, 94 in 1962. From this result the coefficient-theorem follows straightforwardly; recall that det A(G) = (-1)N aN (G).


The explicit statement of the actual theorem was discovered in 1964 practically independently by Horst Sachs 95 (a mathematician), Mirko Milić 96 (an electrical engineer) and Leonard Spialter 97 (a computer chemist active in chemical documentation). Eventually several other scholars arrived at the same result (details in p. 36 of Ref. 42).


Until 1972 the theorem was not known to theoretical chemists. Then it was discovered (in the library) and formulated in a manner understandable to chemists. 86 The authors of the paper 86 were not careful enough and attributed the result solely to Sachs, naming it the Sachs theorem. Because of this mistake, in the subsequently published chemical literature the result was almost exclusively referred to as the Sachs theorem. Attempts to rectify the mistake came much later. 98


Anyway, in what follows we speak of the Harary theorem.


The cycle CN on N vertices, N ( 3, is a connected graph whose all vertices are of degree two (i.e., each vertex has exactly two first neighbors). Denote by K2 the connected graph on two vertices; this graph may be viewed as the two-vertex complete graph or the two-vertex path graph. A graph whose all components are cycles and/or K2-graphs is called a Sachs graph. (We keep here the nowadays commonly accepted name Sachs graph, although Harary graph would, probably, be more justified.)


Consider a graph G on n vertices and let its characteristic polynomial be of the form (3.12).

Theorem 3.1 (Harary, Sachs, Milić, Spialter). Let S be a Sachs graph with N(S) vertices, possessing a total of p(S) components, of which c(S) are cycles and p(S) - c(S) are K2-graphs. Then for k = 1, 2, …, N,
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   (3.13)

where the summation goes over all Sachs graphs S for which N(S) = k and which are contained (as subgraphs) in the graph G. If there are no such Sachs graphs, then ak=0.

Example 3.1. We illustrate the Harary theorem on the example of the molecular graph G3 depicted in Figure 3.2. This graph contains (as subgraphs) two cycles, C3 and C5; fortunately for us, these cycles have no vertex in common which significantly simplifies the application of formula (3.13). The nine edges of G3.3 are labeled by a, b, c, …, h, i. Each edge (together with its two end-vertices) corresponds to a K2-graph.



Figure 3.2. A molecular graph on which the application of the Harary theorem, eq 3.13, is illustrated; contrary to claims by many authors, already in this case it is not easy to perform the actual computation (see text); for molecular graphs with more vertices and cycles the computation of the coefficients of the characteristic polynomial by means of eq 3.13 becomes a hopelessly difficult task

Case k = 1. There are no Sachs graphs with one vertex. Therefore, a1(G3.3) = 0;

Case k = 2. The Sachs graphs with two vertices necessarily have one component which is a K2-graph. In the case of G3.3 there are nine such Sachs graphs, corresponding to the nine edges. Therefore, a2(G3.3) = 9( [(-1)120] = -9.

Case k = 3. The Sachs graphs with three vertices necessarily have one component which is a triangle (C3). The graph G3.3 contains one such Sachs graph, and therefore a3(G3.3) = [(-1)121] = -2

Case k = 4. The Sachs graphs with four vertices are either composed of a four-membered cycle or of two K2-graphs. Because G3.3 possesses no four-membered cycle, its four-vertex Sachs graphs are those corresponding to pairs of independent edges. 

There are 24 such pairs:




a,d   a,e   a,f   a,g   a,h   a,i 




b,e   b,f   b,g   b,h   b,i    c,e




c,f   c,g   c,h    c,i   d ,g   d,h 




d,i   e,g   e,h    f,h    f,i    g,i

Therefore, a4(G3.3) = 24 ( [(-1)220] = 24

Case k = 5. The Sachs graphs with five vertices are either composed of a five-membered cycle or of a two-component system consisting of a triangle and a K2-graph. G3.3 possesses both types of Sachs graph: one C5 and five C3 + K2 :

C3 ,e  C3,, f  C3 ,g  C3 ,h  C3,,i

Consequently, a5(G3.3) = 1 ( [(-1)121] + 5( [(-1)2 21] = 8

Case k = 6. Here the real complications begin. The Sachs graphs with six vertices may be composed of:

a) a six-membered cycle, or

b) a four-membered cycle and a K2-graph, or 

c) two (disjoint) three-membered cycles, or 

d) three K2-graphs. 


In G3.3 only the latter types of 6-vertex Sachs graphs are contained, pertaining to the following selections of three independent edges:




a,d,g   a,d,h   a,d,i   a,e,g   a,e,h




a,f,h    a,f,i    a,g,i   b,e,g   b,e,h




b,f,h    b,f,i    b,g,i   c,e,g   c,e,h




c,f,h    c,f,i    c,g,i   d,g,i 


Therefore, a6(G3.3) = 19([(-1)3 20] = -19.

Case k = 7. The seven-vertex Sachs graphs may be composed of

a) a seven-membered cycle, or 

b) a five-membered cycle and a K2-graph, or 

c) a three-membered cycle and two K2-graphs. 


The latter two types are contained in G3.3, namely: 




C5,a
C5,b
C5,c  




C3,e,g
C3,e,h
C3,f,h  C3,f,i  C3,g,i

               resulting in a7(G3.3) = 3 ( [(-1)221] + 5 ( [(-1)321] = - 4.

Case k = 8. The eight-vertex Sachs graphs may be composed of 

a) an eight-membered cycle, or 

b) a six-membered cycle and a K2-graph, or 

c) a four-membered cycle and two K2-graphs, or 

d) two four-membered cycles, or 

e) a five-membered cycle and a three-membered cycle, or 

f) two three-membered cycles and a K2-graph, or 

g) four K2-graphs.


In our example we encounter only with the Sachs graphs of type e) and g), one of each type: C5 + C3 and a, d, i, g. This implies a8(G3.3) = [(-1)2 22] + [(-1)420] = 5. Thus all coefficients of ((G3.3) have been calculated and we finally obtain:

((G3.3, () = (8 - 9(6 -2(5 + 24(4 + 8(3 - 19(2 - 4( + 5

Another way to express the Harary theorem is the following

Theorem 3.1a. Let S be a Sachs graph with N(S) vertices, possessing a total of p(S) components, of which c(S) are cycles and p(S)-c(S) are K2-graphs. Then

	((G,() =
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where the summation goes over all Sachs graphs S contained (as subgraphs) in the graph G. In formula (3.14) the summation includes also the empty Sachs graph (a fictitious graph with N(S) = p(S) = c(S) = 0) which is assumed to be the subgraph of any graph.


The above example is intended not only to make the reader familiar with the usage of the formula (3.13), but also to illustrate how difficult is the calculation of ( by means of the Harary theorem. It should be said clearly and plainly: Except for a few very small molecular graphs, the Harary theorem is not suitable for the calculation of the coefficients of the characteristic polynomial.


On the other hand, the Harary theorem represents a powerful tool for deducing general properties of the characteristic polynomial, in particular on its dependence on graph (molecular) structure. Here are a few simple results of this kind.


By careful reading the above example we immediately see that not only for G3, but for all graphs G, 

a1(G) = 0;

a2(G) = - number of triangles of G; 

a3(G) = - 2 ( the number of triangles of G; 

a3(G) = a5(G) = a7(G) = … = 0 if and only if the graph G possesses no odd membered cycles; recall that such are the molecular graphs of the so-called alternant hydrocarbons.


If all odd coefficients of ((G) are zero (which happens in the case of molecular graphs of alternant hydrocarbons) then ((G,ξ) = 0 implies ((G,-ξ) = 0 and therefore the zeros of such characteristic polynomials occur in pairs (ξ , -ξ).22

Denote, as before, the number of k-element independent edge sets of a graph G by m(G,k). As before, m(G,0) = 1 for all graphs. A far-reaching consequence of the Harary theorem is the following:

Theorem 3. 2. If the graph G is acyclic then all the odd coefficients of ((G) are equal to zero, a0(G) = 1, whereas for k = 1, 2, …, [N/2], a2k(G) = (-1)k m(G,k). In other words:

	((G,() =
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Formula (3.15) was known already to Sachs. 95 Hosoya 31 was the first who extensively used it. Formula (3.15) is the motivation for the introduction of another important graph polynomial - the matching polynomial.

3.3. The  Matching  Polynomial


The right-hand side of eq  3.15 is equal to the characteristic polynomial if and only if the graph G is acyclic. On the other hand, the right-hand side of eq 3.15 is a well defined polynomial for any graph. Thus we define a new graph polynomial as:

	((G) = ((G,() =
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	(3.16)


and call it the matching polynomial of the graph G.


Immediately from this definition follows:

Theorem 3. 3. The matching polynomial of a graph G coincides with the characteristic polynomial of G if and only if G is acyclic.


In view of eq 3.4, ( is the characteristic polynomial of a symmetric matrix whose entries are real-valued numbers. As well known in linear algebra, all zeros of such a polynomial are necessarily real-valued numbers. From Theorem 3.3 we then see that all zeros of the matching polynomial of an acyclic graph are real-valued numbers. 


However, this latter property is not restricted to acyclic graphs. We namely have:

Theorem 3. 4. All the zeros of the matching polynomials of all graphs are real-valued numbers. 

The history of the polynomial (. is quite perplexed. It has been independently conceived by quite a few authors, mathematicians, physicists and chemists, in many cases in connection with Theorem 3.4. Already this detail indicates that this polynomial found numerous applications (which, however, will not be outlined in this chapter). Around 1970 a theoretical model has been developed in statistical physics, 99-102 in which the partition function was represented by a polynomial which was equivalent to what above was defined as (. (Of course, the terminology used by physicists was quite different than ours). In order to be able to describe phase transitions within this model, it was necessary that ( has at least one complex-valued zero. The authors of Refs. 99-102 proved that this never is the case (i.e., that Theorem 3.4 holds), which for their theoretical model was a disappointing result. Heilmann and Lieb 100 offer not less than three different proofs of Theorem 3.4. Anyway, after proving Theorem 3.4 the model was abandoned. Nevertheless, the research the physicists made on (, especially the results by Heilmann and Lieb100 were later recognized as very important for the theory of the matching polynomial. 


Around the same time Hosoya21 introduced his topological index and the Z-counting polynomial, eq 3.9. This polynomial is essentially the same as (, eq 3.16. A formal transformation of Q(G) into  ((G) and vice versa is straightforward (cf. eq 3.11):
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Few years later Nijenhuis103 demonstrated that the combinatorial object called rook polynomial has the distinguished property of having real-valued zeros. Only much later this result was incorporated into the theory of matching polynomials9, 104-106 when it was realized that every rook polynomial is the matching polynomial of some graph. 

Independently of all these developments, Edward Farrell 7 (a mathematician) defined a graph polynomial essentially identical107 to (, and established its basic properties (but not the reality of its zeros); he was first to use the name matching polynomial. Farrell's paper 7 appeared in 1979, but was written much earlier, certainly before 1977. 

In 1977 two independent but equivalent approaches were put forward, by means of which the resonance energy of conjugated molecules could be calculated in a new and very convenient manner.4, 5
For this one has to find the zeros of ((G) and ((G), with G being the pertinent molecular graph. For the success of the method it is essential that all zeros of both ((G) and ((G) be real-valued. (Hence, curiously: what was bad for the theory of phase transitions, is good for the theory of aromaticity.) Both Aihara4 and Gutman et al.5 were influenced by earlier work by Hosoya.21, 31 Aihara4 named ( the reference polynomial whereas Gutman et al.5, 6, 108 called it the acyclic polynomial. Eventually, a general agreement was reached to call (, eq 3.16, the matching polynomial of the graph G.


Without knowing the earlier results of Heilmann and Lieb,99, 100 Kunz101, 102 and Nijenhuis, 103 Chris Godsil (a mathematician) and one of the present authors proved Theorem 4 anew.9, 104, 109 The same authors demonstrated110 that Theorem 3.4 holds also if G is the (weighted) graph representing heteroconjugated (-electron systems. In 1981 Godsil111 arrived at the following powerful result, from which Theorem 3.4 follows as an easy consequence.

Theorem 3.5. For any graph G there exists an acyclic graph G*, such that ((G,() is a divisor of ((G*,(). 

             If the graph G in Theorem 3.5 is connected, then G* is called the Godsil tree of G. The matching polynomial obeys a simple recurrence relation which makes its calculation relatively easy:

Theorem 3.6. Let G be a graph and e its edge connecting the vertices x and y. Then,

	((G, () = ((G-e, () - ((G-x-y, ()
	(3.17)


If x is a pendent vertex (i.e., y is its only neighbor), then

	((G, () = (((G-x, () - ((G-x-y, ()
	(3.18)



For calculations based on Theorem 3.6, eq 3.19 is also frequently needed. If G consists of (disconnected) components G' and G", then

	((G, () = ((G', () ((G", ()
	(3.19)


Example 3.2. We illustrate the application of the recurrence relations (3.17)-(3.19) on the example of G3.3, Figure 3.2. First, however, we need some preparation.


We compute the matching polynomials of the path graphs PN, see Figure 3.1. Choosing x to be a terminal vertex of the path PN we get from (3.18):

((PN , () = (((PN-1 , () - ((PN-2 , ()


Because (P0 , () ( 1 and (P1 , () ( ( we obtain for N = 2:

((P2 , () = ([(] – [1] = (2 - 1

then for N = 3:

((P3 , () = ([(2 - 1] – [(] = (3 - 2(
then for N = 4:

((P4 , () = ([(3-2(] – [(2-1] = (4 -3(2 + 1

then for N = 5:

((P5 , () = ([(4 - 3(2+1] – [(3- 2(] = (5 - 4(2 + 3(
etc.

Choosing any edge of a cycle CN and applying (3.17) we get:

((CN, () = ((PN , () - ((PN -2, ()

which for the three- and five-membered cycles gives:

((C3, () = ((P3, () - ((P1, () = ((3-2() – (() = (3 - 3(
((C5, () = ((P5, () - ((P3, () = ((5 - 4(2 + 3() - ((3 -2() = (5 - 5(3 + 5(

We are now ready to compute ((G3.3). For this choose the edge d (whose end vertices are x and y) and apply (3.17):

	((G3.3, () = ((G3.3-d, () - ((G3.3-x-y, ()
	(3.20)


Now, G3 - d is a disconnected graph composed of C3 and C5. Therefore by eq 3.19:

((G3.3-d, () = ((C3, () (((C5, () = ((3 - 3()((5 - 5(3 + 5() = (8 - 8(6 + 20(4 - 15(2
Similarly, G3.3  - x -y is disconnected, composed of P2 and P4. Therefore, by (3.19):

((G3.3 -x-y, () = ((P2, ()(((P4, () = ((2 - ()((4 - 3(1 + 1) = (6 - 4(4 + 4(2 - 1

Substituting these expressions back into (3.20) we readily obtain:

((G3.3, () = ((8 - 8(6 + 20(4 - 15(2) – ((6 - 4(4 + 4(2 - 1) = (8 - 9(6 + 19(2 + 1


The recurrence relations (3.17) - (3.19) can be expressed in terms of the Z-counting polynomials:

Theorem 3. 6a. Using the same notation as in eqs 3.17 - 3.19, the Z-counting polynomial, defined via eq  3.9, satisfies:

	Q(G, () = Q(G-e, () + (Q(G - x - y, ()
	(3.21)

	Q(G, () = Q(G-x, () - (Q(G - x - y, ()
	(3.22)

	Q(G, () = Q(G', () ( Q(G", ()
	(3.23)


The matching polynomials, their coefficients and (in some cases) their zeros were determined for numerous classes of graphs.6, 84, 108, 112-143 Several computer-aided computation algorithms for the calculation of ( were put forward.144-152 


The fact that the matching polynomial has real zeros and is closely related to the characteristic polynomial of the underlying graph G (see below), motivated many authors to seek for a graph-like object, denote it by Ghyp, which would have the property ((Ghyp, () ( ( (G, ()153-162 This search was successful in many cases - for instance, for unicyclic and bicyclic graphs. Ghyp is usually constructed from G so that some edges of G are weighted by complex-valued (or even quaternion valued!)159 numbers.


The matching polynomial is intimately connected to the characteristic polynomial and has many properties analogous to the latter. Some of these relations are outlined in the subsequent section. More properties of the matching polynomials can be found in Chapter 4 of the book46 and elsewhere.163-169 As a curiosity we mention that several important orthogonal polynomials are matching polynomials of some pertinently chosen graphs.170-172 For instance, the matching polynomial of the n-vertex complete graph is equal to the Hermite polynomial.

3.4. The  Characteristic  Polynomial.  Part 2.

In the case of acyclic graphs the relation between the characteristic and the matching polynomials is straightforward (see Theorem 3.3). If a graph G contains cycles, then the relation between  ((G) and ((G) is somewhat more complicated. 


Let G be a graph and C 1, C 2, …, C r be the cycles contained (as subgraphs) in it, see Figure 3.3. The subgraph G - C i is obtained by deleting from G all vertices belonging to C i (and, of course, all edges incident to these vertices). If the cycles C i and C j are disjoint (i.e., have no vertices in common), then the subgraph G - C i - C  j is defined as (G - C i ) - C j or, what is the same, as (G - C j ) - C i. If C i and C j have joint vertices, then without defining G - C i - C j, in the below formulas we set ((G - C i- C j, () ( 0 and ((G - C i - C j, () ( 0. The case of the subgraphs G - C i - C j - C k, G - C i - C j - C k - C h, etc. is 
treated analogously. Some of the subgraphs G - C i, G - C i - C j, etc. may be empty, i.e., all vertices of G need to be deleted. If H is the empty graph then it is both convenient and consistent to set  ((H, () ( 1  and ((H, () ( 1.


[image: image35.wmf]
Figure 3.3. Some cycles of the molecular graph of benzo[a]pyrene, having a total of 21 cycles; the main practical difficulty in the calculation of the characteristic polynomials of polycyclic graphs lies in the enormous number of cycles that need to be taken into account

Theorem 3.7. With the above specified notation and conventions,

	((G, () = ((G, () - 2
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	((G, () = ((G, () + 2
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where the summations go over all cycles, pairs of cycles, triplets of cycles, etc., contained in G.

Note that on the right-hand sides of (3.24) and (3.25) there are 2r summands, some of which may be equal to zero. Indeed, the actual application of formulas (3.24) and (3.25) is much simplified by the fact that in the second, third, etc. summations only pairs, triplets, etc. of mutually disjoint cycles need to be considered. 

Formula (3.24) seems to be discovered by Hosoya;31 it was later extensively applied within the theory of cyclic conjugation,11 where also formula (3.25) was reported for the first time. A more compact way of writing (3.24) and (3.25) is:

((G, () =
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where the summations go over all regular graphs R of degree two, contained as subgraphs in G (including the empty graph): p(R) is the number of component of R. Recall that in a regular graph of degree ( all vertices have exactly ( first neighbors. Two special cases of Theorem 3.7 deserve to be mentioned:

Corollary 3.7.1. If G is a unicyclic graph (r = 1) and C is its unique cycle, then
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Corollary 3.7.2. If CN is the N-vertex cycle, then
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Example 3.3. Calculate (again) the characteristic polynomial of the graph G3.3 from Figure 3.2, this time employing eq 3.24. The graph G3.3 possesses two cycles, C3 and C5, which are disjoint. Hence, 
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The polynomial ((G3.3) has been calculated in Example 3.2.


The subgraph G3.3  - C3 is just the cycle C5. Similarly, G3.3 - C5 = C3. The matching polynomials of C3 and C5 have also been computed in Example 3.2. Then, in view of Corollary 3.7.2,

((C3, () = ((C3, () – 2 = (3 - 3( - 2
((C5, () = ((C5, () – 2 = (5 - 5(3 + 5( - 2


The subgraph G3.3  - C3 - C5 has no vertices, and therefore ((G3.3 - C3 - C5, () ( 1. Bearing the above in mind we have

       ((C3, () = [(8 - 9(6 +24(4 - 19(2 + 1] – [((5 - (3 + 5( - 2)+((3 -3( -2)] + 4[1] =

                          = (8 - 9(6 - 2(5 + 24(4 + 8(3 - 19(2 - 4( +5

which, of course, is same as what we obtained in Example 3.1.


By means of Theorem 3.7 the characteristic polynomial is expressed in terms of matching polynomials, and vice versa. It is sometimes advantageous to express the characteristic polynomial of a graph in terms of characteristic polynomials of subgraphs. (The analogous result for the matching polynomial is Theorem 3.6). Of the several recurrence relations of this kind173-191 we mention here a simple and, probably, most handy one.

Theorem 3.8. Let G be a graph and e its edge connecting the vertices x and y. Then,

	((G, () = ((G - e, () - ((G - x - y, () - 2
[image: image47.wmf]å
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with the summation going over all cycles C containing the edge e.


Formula (3.26) is often attributed to Schwenk175 although it can be found already in a paper by Heilbronner.173 Anyway, the following corollary of Theorem 3.8 is known as the Heilbronner formula.

Corollary 3.8.1. If the edge e does not belong to any cycle (in which case it is called bridge), then
	((G, () = ((G - e, () - ((G - x - y, () 
	(3.27)


In particular, formula (3.27) holds for any edge of any acyclic graph. If x is a pendent vertex (i.e., y is its only neighbor), then

	((G, () = (((G - x, () - ((G - x - y, () 
	(3.28)


Eqs 3.26 - 3.28 should be compared with (3.17) and (3.18). When applying these recurrence relations also the identity

((G, ()  = ((G', ()((G", ()

may be of great use, where the notation is the same as in eq 3.19.


Among the plethora of other known results for the characteristic polynomial we state here only two, which reveal further deep lying analogies between the characteristic and the matching polynomials.


Let G be a graph and v1 , v2 , …, vN  its vertices. Then
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The (-part of this identity is due to Clarke, 192 the (-part was first reported by Gutman and Hosoya.108 For applications see Refs. 193-195.


The left hand sides of the following peculiar identities are called graph propagators.196 Let x and y be two (not necessarily adjacent) vertices of the graph G. Let P be a path connecting x and y. Then,

	((G - x, ()((G - y, () - ((G, ()((G - x - y, () = [
[image: image52.wmf]å
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	((G - x, ()((G - y, () - ((G, ()((G - x - y, () = 
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with the summations going over all paths of G, whose end vertices are x and y. Evidently, for all real values of the indeterminate (, both propagators (3.30) and (3.31) are positive. Formulas (3.30) and (3.31) were reported in Refs.197 and 100, respectively. Formula (3.30) is just a graph-theoretical version of an old result in linear algebra. 

The characteristic polynomial can be computed also in several other ways. Many (perhaps too many) algorithms for its calculation have been put forward.198-227 When the graph possesses some symmetry, then special calculation techniques could be

developed.228-245 (Recall that here we do not quote papers devoted to the finding of graph eigenvalues using symmetry arguments). Discussing the calculation of the characteristic polynomials of graphs with weighted edges and vertices246-250 goes beyond the ambit of this book. Needless to say that characteristic polynomials of a great variety of particular graphs and particular classes of graphs have been determined. Such details are, first of all, to be found in the seminal book42 and elsewhere.251-276

Immanantal Polynomials.


Let M = ||Mij|| be a square matrix of order N. Let ( be one of the irreducible characters of the symmetric permutation group SN. The immanent of the matrix M, corresponding to the character ( of SN, is defined as

d((M ) = 
[image: image54.wmf]å
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(g)M1,g(1)M2,g(2) ... MN,g(N)
where g stands for an element of SN which transforms the permutation (1, 2, …, N) into (g(1), g(2), …, g(N)).


Note that if ( is the alternating character, then d( is the familiar determinant; if ((g) = 1 for all g, then d( is the permanent. 


The immanantal polynomial of the matrix M is d(((I - M). If M is the adjacency matrix of a graph, then one speaks of the immanantal polynomial of a graph. The characteristic and the permanental polynomials are special cases of immanantal polynomials. For more details see elsewhere.18-20 

3.5.  A  Unifying  Approach:  the  (-Polynomial


The fundamental difference between the characteristic and the matching polynomials is in the effect of cycles. One may view ((G) and the characteristic polynomial of G in which all cyclic contributions (originating from the cyclic Sachs graphs, c(S)>0, cf. Theorem 3.1) have been completely neglected. One may wonder what would happen by neglecting the contributions of only some cycles of G, or by only partially neglecting these contributions. Such deliberations resulted in the concept of the (-polynomial.

Let, as before, the graph G contain (as subgraphs) the cycles C1, C2, …, Cr, see Figure 3.3. For i = 1, 2, …, r, associate a variable t(Ci) to the cycle Ci. This variable is viewed as the weight of the cycle Ci: if t(Ci) = 1 then the effect of this cycle is fully taken into account, if t(Ci) = 0 then the effect of this cycle is fully neglected. Denote, for brevity, the r-tuple [t(C1), t(C2), …, t(Cr)] by 
[image: image55.wmf]t

r

 , which may be viewed as an r-dimensional vector. Then the (-polynomial of the graph G is defined as follows.11



If the graph G is acyclic, then

	((G, 
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	(3.32)


If the graph G possesses cycles, then

	((G,
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            The symbol 
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r

in eq 3.32 is fictitious; the purpose of eq 3.32 is to define the (-polynomial-concept for all graphs.


Formula (3.33) should be compared with (3.24). The idea behind it is that by continuously changing the parameters t (usually between 1 and 0) we can continuously change the effect of the respective cycles on the polynomial itself (which we will discuss below) and on various (-electron characteristics of conjugated molecules (which are calculated from the polynomials, but which we are not discussing in this book; for details see Ref.11.


This graph polynomial was conceived while the authors of Ref.11 worked together in Mülheim, Germany. The suggestion to name it Mülheim polynomial was not accepted by the mathematico-chemical community; what only reminds this attempt is the symbol of the polynomial. The following property of the (-polynomial follows directly from its definition and/or from the analogous properties of both the characteristic and the matching polynomial.


Denote by 
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r

 and 
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 the vectors (1, 1, …, 1) and (0, 0, …, 0), respectively.

Theorem 3. 9. Let G be a graph possessing at least one cycle. Then, using the same notation as in eqs 3.29 and 3.26,

((G, 
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Further recurrence relations are found elsewhere.277-280 The dependence of the (-polynomial on a particular cycle C (or more precisely, on its weight t(C)) is given by
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which is a relation of crucial importance in the theory of cyclic conjugation.11
The (-polynomial not only includes as special cases the characteristic and the matching polynomials, but also many other graph polynomials. In particular, if the cycle-weights are chosen so that all cycles of the same size have equal weights, then we arrive at the circuit polynomials, invented and extensively studied by Farrell.10, 12, 61, 85, 281-290 
Some other cycle-related graph polynomials have sporadically occurred in the chemical literature.291-294

Another important special case is the (-polynomial (sometimes called “circuit characteristic polynomial”).13-15, 161.295-299
Let G be a graph and C one of its cycles. Choose the vector 
[image: image79.wmf]t

r

so that t(C) = 1 and t(C' ) = 0 for all other cycles C ' (if any). Then

((G, C ) = ((G, C, () = ((G, 
[image: image80.wmf]t

r

, ()

or, what is the same,

	((G, C, () = ((G, () – 2((G - C, ()
	(3.34)


formula (3.34) should be compared with Corollary 3.7.1. Indeed, if G is unicyclic, then its (-polynomial is the same as the characteristic polynomial.

The (-Polynomial Hypothesis


The (-polynomial has been defined so that it contains the effect of just one individual cycle of a polycyclic (molecular) graph, namely the effect of the cycle C. This feature is the basis of the application of the (-polynomials in the theory of cyclic conjugation, for the calculation of the effect of an individual cycle on various (-electron properties of a polycyclic conjugated molecule, especially on its total (-electron energy.13

With regard to this application, it is necessary that all the zeros of ((G, C) be real-valued numbers, preferably for all graphs G and all cycles C contained in them. Numerical calculations (e. g. in Ref.13) showed that this is the case in many chemically relevant examples. Further studies revealed that the zeros of ((G, C) are real for many types of graphs,14, 15, 161, 295-299 among which are all unicyclic graphs (which is trivial), all bicyclic graphs, all graphs with eight and fewer vertices, the complete graphs, etc. In spite of all these efforts, and in spite of a reward offered,297 the following hypothesis remains unsolved; it could be considered as one of the most challenging problems in the theory of graph polynomials (of interest in chemistry).

Conjecture. If G is any cycle-containing graph and C is any of its cycles, then all the zeros of ((G, C, () = ((G) - 2((G - C) are real-valued numbers.


This conjecture may be false. If so, then finding a single counterexample (a particular graph G and a particular cycle C in it), for which at least one zero of ((G, C, () is complex-valued, would suffice.

* * *


We see that the characteristic and the matching polynomials can be viewed as two limit cases of the (-polynomial. Because they both have real zeros, the natural question is what can be said about the reality of the zeros of ((G). In the general case, some zeros of some (-polynomials may be complex-valued numbers.11, 300 There, however, exists an interesting result:11

Theorem 3.10. Let G be a graph and C1, C2, …, Cr be its cycles, r ( 2. If any two cycles of G are disjoint (i. e., have no vertex in common), then all the zeros of ((G, 
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, () are real-valued numbers, provided  -1 ( t(Ci) ( +1 holds for all i = 1, 2, …, r.


If the conditions -1 ( t(Ci) ( +1 are not obeyed for all cycles Ci, then complex-valued zeros may occur. If r = 1 then all zeros of ((G, 
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, () are real-valued, irrespective of the value of t(C1).301


An intriguing unsolved problem in the theory of the (-polynomial is the (-analog of eqs 3.30 and 3.31. In other words: what can be said about the propagator 

	((G-x,
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, () - ((G,
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	(3.35)


and can it be expressed in terms of paths connecting the vertices x and y? Under which conditions is this propagator positive-valued? Notice that for 
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 and 
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 the (-propagator (3.35) reduces to the 
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- and (-propagators, (3.30) and (3.31), respectively.

3. 6. The  Laplacian  Polynomial


The Laplacian matrix is a very important object in the analysis of electrical networks (and is, among other things connected with the classical Kirchhoff laws). Its role in chemical graph theory is much more modest.76, 302 Therefore, the fundamentals of the theory of the Laplacian polynomial, outlined in this section, should be understood primarily as a possibility (and an invitation) for future chemical applications. Some chemical connections of the Laplacian matrix, especially those related to the Wiener index and other distance-related structure-descriptors, are mentioned elsewhere in this book. 

Let, as before, G be a (molecular) graph, v1, v2, …, vN its vertices and A = A(G) its adjacency matrix. The degree di of the vertex vi is the number of the first neighbors of this vertex (see Chap. 1).

Let DEG = DEG(G) be the square matrix of order N whose i-th diagonal element is di and whose all off-diagonal elements are zero. Then the Laplacian matrix of the graph G is defined as

La = La(G) = DEG(G) - A(G)
The Laplacian characteristic polynomial of the graph G is just the characteristic polynomial of the Laplacian matrix:

	((G) = ((G, () = det[(I - La(G)]
	(3.36)


and we write it in the form:

	((G, () = 
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	(3.37)


which should be compared with eq 3.12. The mathematical theory of Laplacian polynomials and of their zeros - the so-called Laplacian graph spectra - is nowadays well elaborated; for details see the reviews.20, 69, 72, 76 

The Kel'mans Theorem

 
The fundamental result, relating the coefficients of ((G) with the structure of the graph G, is the Kel'mans theorem.42, 303 (This theorem was first communicated by Kel'mans in 1967 in a booklet entitled Cybernetics in the Service of Communism published in Moscow and Leningrad, in Russian language.) To formulate it we need a few definitions.


Consider a graph G on N vertices. Any N-vertex subgraph H of G is a said to be a spanning subgraph; hence H is obtained from G by deleting some of its edges, but none of its vertices. If H is acyclic, we say that H is a spanning forest of G; if H is acyclic and connected, then H is a spanning tree of G. 


Let F be a spanning forest of a graph G. Let T1 , T2 , …, Tp be the components of F, with N(T1), N(T2), …, N(Tp) vertices, respectively, 

N(T1) + N(T2) + … + N(Tp) = N(F) = N
Then the product N(T1) N(T2)  … N(Tp) will be denoted by ((F).


For an example see Figure 3.4.
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         G3.3
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         Figure 3.4. The molecular graph G3.3 and some of its spanning forests; 

           γ(F1) = 8, γ(F2) = 5∙3 = 15, γ(F3) = 1∙1∙1∙5= 5, γ(F4) = 2∙2∙2∙2 = 16, 

γ(F5) =1∙1∙1∙1∙1∙1∙1∙1= 1; of these spanning forests only F1 is a spanning tree

Theorem 3.11. Let G be a graph on N vertices and Laplacian characteristic polynomial ((G, (), given by eq 3.37. Then

ck(G) = (-1)k
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with summation going over all spanning forests of G which have N -  k components (p = N - k).


The practical application of the Kel'mans theorem is rather tedious. This is seen from the below example, where we compute ((G) of a very small graph.


[image: image95.wmf]
Figure 3.5. A small graph G3.4 and all its spanning forests; with the increasing number of vertices and edges, the number of spanning forests becomes enormously large, thus making the calculation of the coefficients of the Laplacian polynomial by means of the Kel'mans theorem unfeasible

Example 3.4. The spanning forests of the 4-vertex graph G3.4 are depicted in Figure 3.5, together with the respective gamma-values. Then by direct application of the Kel'mans theorem we have:



c0(G3.4) = (-1)0[1] = 1



c1(G3.4) = (-1)1[2+2+2+2] = -8



c2(G3.4) = (-1)2[3+3+3+3+3+4] = 19



c3(G3.4) = (-1)3[4+4+4] = -12

Because there cannot be spanning forests with 4 - 4 = 0 components, it follows that c4(G3.4) = 0. We thus have:
((G3.4 , () = (4 - 8(3 + 19(2 - 12(

After carefully working out the above example we easily envisage a few general results, holding for any graph G with N vertices and m edges:

c0(G) = 1;  c1(G) = - 2m;  cN (G) = 0;  cN - 1(G) = (-1)N-1 N ( number of spanning trees.

Because only connected graphs have spanning trees, we see that cN -1(G) ( 0 if and only if the graph G is connected. Further, cN -1(G) = ( N if and only if the graph G is connected and acyclic, i. e. a tree. A less elementary result of the same kind is:

Corollary 3.11.1. If G is a tree, then
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where W(G) is the Wiener number of G, a distance-related topological index, discussed elsewhere in this book.

* * *

A graph is said to be regular of degree di if all its vertex degrees are equal to degi, that is d1 = d2 = … = dN  = di. For such graphs, La = diI - A and from eqs 3.4 and 3.36 we straightforwardly obtain

((G, () = (-1)N 
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a relation which holds for N-vertex regular graphs of degree di . For instance, the cycle CN is a regular graph of degree 2 and therefore

((CN, () = (-1)N
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For non-regular graphs the relation between the regular and the Laplacian characteristic polynomials is somewhat less simple:304
Theorem 3.12. Let G be a graph on N vertices, v1, v2, …, vN  and let di  be the degree of the vertex vi, i = 1, 2, …, N. Then

((G, () = (-1)N [
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with the summations going over all vertices, pairs of vertices, triplets of vertices, etc. of G. As before, 
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(G - v1 - v2 - … - vN) ( 1.


For bipartite graphs (that are graphs without odd-membered cycles) the following relation was recently reported.305
Theorem 3.13. Let G be a connected bipartite graph with N vertices and m edges. Let L(G) be the line graph of G. Then, 

(m((G, () = (N
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(L(G), ( -2)

3.7.  Moving  in  another  direction:  the  independence polynomial


The above outlined (mutually closely related) Z-counting and matching polynomials are defined via the quantities m(G, k), cf. eqs 3.9 and 3.16. To repeat: m(G, 
k) is the number of k-element independent edge sets of the graph G. In other words: m(G, k) is the number of ways in which k mutually independent edges are selected in G. 

One may ask if instead of selecting independent  edges we could design graph polynomials by selecting some other structural features of the graph. The natural choice would be the vertices of the graph. 


In close analogy to the numbers m(G,k) and the polynomial Q(G) we now introduce the numbers N(G,k) and the polynomial ω(G), named the  independence polynomial. Two vertices of a graph G are said to be independent if they are not adjacent. A set of vertices of G is said to be independent if all of its elements are mutually independent. The number of distinct k-element independent vertex sets of G is denoted by N(G,k). In addition, N(G,0) = 1 and N(G, 1) = number of vertices of G. The independence polynomial is then defined in full analogy with eq 3.9:

	ω(G) = ω(G, λ) = 
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	(3.38)


Example 3.5. By direct application of (3.38) we compute the independence polynomial of the graph G3.5, depicted in Figure 3.6. 
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                             G3.5

            G3.5 – a
                          G3.5 - Na
Figure 3.6. A molecular graph and its two subgraphs, used to illustrate

the calculation of the independence polynomial

Case k = 1. G3.5 has eight vertices and therefore N(G3.5, 1) = 8. 

Case k = 2. The following pairs of vertices of G5 are not adjacent:




a, c 
 a, d 
 a, f 
 a, g 
 b, d




b, e 
 b, f 
 b, g 
 b, h 
 c, e




c, f 
 c, g 
 c, h 
 d, f 
 d, g




d, h 
 e, g 
 e, h 
 f, h 
 

Hence, N(G3.5, 2) = 19. 

Case k = 3. The following triplets of vertices of G3.5 are not mutually adjacent:




a, c, f
  a, c, g
     a, d, f     a, d, g     b, d, f 




b, d, g
  b, d, h      b, e, g    b, e, h     b, f, h




c, e, g
  c, e, h
     c, f, h     d, f, h

Hence, N(G3.5, 3) = 14. 

Case k ≥ 4. There is a unique set of four independent vertices, namely: {b, d, f, h}. Therefore N(G3.5, 4) = 1 and, in addition, N(G3.5, k) = 0 for k > 4. Bearing in mind that by definition N(G3.5, 0) = 1, we arrive at

ω(G5, λ) = 1 + 8 λ + 19 λ2 + 14 λ3 + λ4
*  *  * 

The fundamental recursion relations for ω(G) are given by the following:

Theorem 3.14 Let x be a vertex of the graph G. The set consisting of x and its first neighbors is denoted by Nx. Then the independence polynomial, defined via eq 3.38, satisfies:

	ω(G, λ) = ω(G - x, λ) + λω(G - Nx, λ)
	(3.39)


If x is a pendent vertex, its only first neighbor being y, then Nx = {x, y} and, as a special case of (3.39), 

	ω(G, λ) = ω(G - x, λ) + λω(G - x - y, λ)
	(3.40)


Further, if G is disconnected and G' and G” are its components, then

	ω(G, λ) = ω(G', λ) ∙ ω(G”, λ)
	(3.41)


Relations (3.39) - (3.41) should be compared with (3.21) - (3.23).

Example 3.6. We calculate once again ω(G5), this time by using Theorem 3.14. For this we need some preparation. We first calculate the independence polynomials of the first few path graphs. For P1 and P2 by direct calculation we readily get: ω(P1) = 1 + λ ,  ω(P2) = 1 + 2λ. Now, applying (3.40) to a pendent vertex x of PN and bearing in mind that PN - x = PN -1 and PN - x - y = PN -2 we get

ω(PN , λ) = ω(PN –1 , λ) + λω(PN –2 , λ)

which successively yields:

ω(P3, λ) = [1 + 2λ] + λ [1 + λ] = 1 + 3λ + λ2 


ω(P4, λ)  =  [1 + 3λ + λ2] + λ[1 + 2λ] = 1 + 4λ + 3λ2

ω(P5, λ)  =  [1 + 4λ + 3λ2] + λ[1 + 3λ + λ2] = 1 + 5λ + 6λ2 + λ3 


etc


ω(P8, λ) = 1 + 7λ + 15λ2 + 10λ3 + λ 


etc
The above polynomials should be compared with ((PN), obtained in Example 3.2. Choose vertex a in G3.5, see Figure 3.6. This vertex has three first neighbors: b, e, h and therefore Na = {a, b, e, h}. The subgraphs G3.5 - a and G3.5 - Na, also shown in Figure 3.6, are in fact P8 and P2 + P2, respectively. Therefore, 

ω(G3.5)   =  ω(G3.5 - a, λ) + λω(G3.5 - Na , λ)  =  ω(P8, λ) + λω(P2+P2, λ)



 = ω(P8 , λ) + λω(P2, λ)2  =  [1 + 7λ + 15λ2 + 10λ3 + λ] + λ[1 + 2λ]2 



 = 1 + 8λ + 19λ2 + 14λ3 + λ4

same as before, but slightly easier to calculate. 

*  *  * 


For further details on the theory of independence polynomials see Refs. 134, 168, 169, 307-309; many properties of ω- and Q-polynomials are fully analogous, which is frequently used in their research. Other related graph polynomials are the king, color and star polynomials. 310-317

If instead of sets of independent vertices one considers sets of mutually adjacent vertices, then one arrives at the so-called clique polynomial. 318-320
With regard to the chemical applications of the independence numbers N(G, k) and the associated graph polynomial ω(G) one should, first of all, mention the topological theory of Merrifield and Simmons; its details (which go far beyond the ambit of this chapter, can be found in the book.321 The sum of the numbers m(G, k), i. e. , the value of the independence polynomial for λ = 1, is known under the name Merrifield-Simmons index. However, as explained below, the independence polynomials have much wider chemical (and other) applications. 


Beyond the Independence Polynomial?


Once we learned how to construct the independence polynomial as an analogy of the matching polynomial, we may be inclined to introduce further such counting polynomials. We would simply have to decide which structural features in a (molecular) graph to count - and we are done. This, indeed, has happened: the mathematical and chemical literature is quite reach in such attempts, 310-320 of which we point out the chemically significant sextet polynomial in the theory of benzenoid hydrocarbons 32-36, 40, 79, 322-333 and its generalizations. 37, 38, 334

However, there is a reason to stop at the independence polynomial. The following theorem by Gutman and Harary 306 shows that ω may be viewed as the ultimate counting polynomial of its kind. Let G be a (labeled) graph and S = {S1, S2, ..., SN} a set of some of its (labeled) subgraphs (or structural features). Suppose that for any two of these subgraphs, say Si and Sj, we can decide whether they obey a condition Si, ĩ, Sj (which one may interpret as Si and Sj being mutually independent). For k = 2, 3, ..., let o(G, k) be the number of k-element subsets of S, in which all elements pairwise obey the relation ĩ (i. e. all elements are mutually independent). It is consistent (yet not necessary) to set o(G, 0) = 1 and o(G, 1) = N. Note that the numbers o(G, k) have been chosen in a fairly arbitrary manner.

Theorem 3.15. The polynomial 
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is the independence polynomial of some graph. 


Corollary 3.15. 1. The Z-counting polynomial is an independence polynomial. Let L(G) denote the line graph of the graph G. Then, for any graph G, the Z-counting polynomial of G coincides with ω(L(G)).


Corollary 3.15. 2. The clique polynomial is an independence polynomial. Let 
[image: image111.wmf]G

denote the complement of the graph G. Then, for any graph G, the clique polynomial of G coincides with ω(
[image: image112.wmf]G

).

At this point we are not going to define the  sextet polynomial, 35 and  Clar graph, 323 playing an important role in the Clar aromatic sextet theory of a benzenoid hydrocarbon; the interested readers should consult the book 39 the original paper by Hosoya and Yamaguchi, 35 the review 40 or some of the numerous papers on this topic. 32-34, 36, 79, 322-333 Anyway, we have:


Corollary 15. 3. The sextet polynomial is an independence polynomial. Let C(B) denote the Clar graph of the benzenoid hydrocarbon B. Then, for any benzenoid system B, the sextet polynomial of B coincides with ω(C(B)).

 3.8.  More 


Before ending this chapter we wish to mention a few more graph polynomials that are encountered in chemical graph theory. Among them is the Wheland polynomial, the coefficients of which count resonance structures of various degrees of excitation. 335-337 A related polynomial was considered by John. 338

The  Hosoya polynomial is defined as 67

H(G, λ) = 
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where d(G, k) is the number of vertex pairs of the graph G, the distance of which is k. Then d(G, 1) is equal to the number of edges of G, whereas it is consistent to choose d(G, 0) =  number of vertices of G. 


The Hosoya polynomial is defined only for connected graphs.


Hosoya, who invented H(G, λ) named it the Wiener polynomial because of its remarkable property: 67
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where W(G) is the Wiener topological index (see Chap. 4, this book). Eventually, the more appropriate name Hosoya polynomial has been accepted. Further results of the theory of this distance-based graph polynomial are found elsewhere. 339-344
 *  *  * 

 Is this the end?

No. But we must stop somewhere.
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