194
M. V. Diudea, I. Gutman and L. Jantschi
193
CCluj Indices

Chapter 6 

Cluj  Indices

In cycle-containing graphs, the Wiener matrices are not defined. (See Chap. Topological Matrices). Wiener indices are herein calculated by means of the distance-type matrices1,2 but their meaning is somewhat changed (see Sect. 4.2).

An attempt of Lukovitz to extend the Randić's definition of hyper-Wiener index to simple cycles resulted in a quite strange version of this index.3 

Cluj matrices try to fill the hall of the Wiener matrices, in the same manner as these matrices do in acyclic graphs (i.e., counting the external paths with respect to the path (i,j)). 

6.1.  Cluj  Indices,  CJ and CF
Among several conceivable versions of the Cluj indices,4 two variants are here discussed: (1) at least one path external to the path (i,j), (see Sect. 2.11.1) leading to CJ indices and (2) all paths  external to the path (i,j), (see Sect. 2.11.2) that provides the CF indices. As shown in Sect. 2.11.2, the entries in a CF matrix are true fragments (i.e., connected subgraphs).

The Cluj indices are calculated5-10. as half-sum of the entries in a Cluj symmetric matrix, M, (M = CJD, CJ(, CFD, CF( - see Sect. 2.11.1)
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or from an unsymmetric Cluj matrix, by
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The number defined on edge, IE, is an index while the number defined on path, IP is a hyper-index. Note that the operators 
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 may be applied to both symmetric and unsymmetric matrices. When the last two operators are calculated on a symmetric matrix, the terms of sum represent squared entries in that matrix. This is the reason for the number 2 in the symbol ofthese operators. It is obvious that 
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where (UM)T is the transpose of the unsymmetric matrix UM. Only in trees, and only for Cluj distance indices, 
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. The edge defined indices are identical for the two versions of Cluj indices in all graphs: 
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. Values of the above discussed indices for a set of 45 cycloalkanes5 are listed in Table 6.1.

The boiling point of the set of cycloalkanes included in Table 6.1 correlates r=0.991; s=5.93; F = 2333.7 with  lnIP(CJD)5 and r=0.989; s=6.60; F = 1876.22 with lnIP(CFD).


A systematic search has been undertaken, including the calculation of the sensitivity, S (see Chap. Topological Indices) of these indices on the set of all cycloalkane isomers having ten vertices/atoms and three to ten membered cycles (376 structures).9 That study indicated that the sensitivity of IP2(UCJD)  to distinguish among the above mentioned isomers is about 0,525. This value is superior to the sensitivity of the Wiener W (0,216) and hyper-Wiener WW (0,408) indices.


The cycloalkane isomers were generated by the program FRAGGEN, written in Turbo Pascal at the TOPO Group Cluj.

6.2.  Cluj  Indices  of  Particular  Graphs

6.2.1. Cluj Indices of Path Graphs

Cluj indices were designed to reproduce the Wiener  indices in path graphs and to

extend the Wiener definition (see eqs 4.19, 4.20) to cycle-containing graphs. It is immediate that a relation of the type (4.29) also holds for the Cluj indices

IP(CJD)  = IE(CJD) + I((CJD)





(6.5)
For path graphs, by replacing the formulas of Cluj indices existing in Table 6.2, entries 1 and 3, one obtains


I( (CJD)(PN) = N(N-1)(N-2)(N+1)/24




(6.6)

Table 6.1.  Boiling Points and Cluj-Type Indices for Some Cycloalkanes.
	No
	Graph*
	BP
	IP(CJD)
	IP(CJ()
	IP(CFD)
	IP(CF()
	IE(CJD)
	IE(CJ()

	1
	C4
	13.1
	18
	6
	18
	6
	16
	4

	2
	11MC3
	21
	24
	20
	24
	20
	15
	15

	3
	EC3
	35.9
	32
	26
	32
	26
	17
	17

	4
	MC4
	40.5
	37
	17
	39
	17
	28
	10

	5
	C5
	49.3
	40
	10
	40
	10
	20
	5

	6
	112MC3
	56.5
	49
	39
	49
	39
	26
	26

	7
	123MC3
	66
	54
	42
	54
	42
	27
	27

	8
	EC4
	70.7
	73
	41
	77
	41
	45
	21

	9
	MC5
	71.8
	71
	25
	75
	25
	33
	12

	10
	C6
	80.7
	90
	24
	90
	24
	54
	6

	11
	PC4
	110
	132
	84
	138
	84
	68
	38

	12
	11MC5
	88.9
	105
	43
	113
	43
	48
	21

	13
	12MC5
	91.9**
	109
	48
	121
	48
	49
	22

	14
	13MC5
	91.7**
	119
	46
	127
	46
	51
	21

	15
	MC6
	100.9
	142
	48
	149
	49
	78
	14

	16
	C7
	117
	154
	42
	154
	42
	63
	7

	17
	112MC5
	114
	150
	74
	170
	74
	67
	34

	18
	113MC5
	105
	170
	70
	182
	70
	71
	32

	19
	123MC5
	115
	164
	77
	184
	77
	70
	34

	20
	1M2EC5
	124
	178
	93
	198
	93
	72
	39

	21
	1M3EC5
	121
	199
	88
	211
	88
	76
	37

	22
	PC5
	131
	215
	113
	227
	113
	78
	45

	23
	IPC5
	126.4
	186
	92
	198
	92
	73
	40

	24
	11MC6
	119.5
	197
	75
	211
	77
	104
	24

	25
	12MC6
	123.4**
	202
	81
	222
	85
	106
	25

	26
	13MC6
	124.5**
	211
	80
	227
	82
	108
	24

	27
	14MC6
	120
	220
	80
	234
	82
	110
	24

	28
	EC6
	131.8
	226
	94
	242
	96
	109
	29

	29
	MC7
	134
	225
	71
	235
	73
	88
	16

	30
	C8
	146
	288
	64
	288
	64
	128
	8

	31
	1123MC5
	132.7
	222
	109
	250
	109
	93
	48

	32
	113MC6
	136.6
	285
	117
	310
	120
	140
	36

	33
	124MC6
	136
	296
	120
	324
	124
	144
	37

	34
	135MC6
	138.5
	291
	114
	318
	117
	144
	36

	35
	1M2EC6
	151
	300
	142
	336
	149
	142
	44

	36
	1M3EC6
	149
	322
	141
	349
	144
	146
	42

	37
	PC6
	154
	352
	170
	377
	173
	148
	52

	38
	IPC6
	146
	313
	143
	338
	146
	142
	46

	39
	EC7
	163.5
	337
	127
	361
	131
	121
	33

	40
	C9
	170
	450
	90
	450
	90
	144
	9

	41
	1M2IPC6
	171
	401
	206
	453
	216
	180
	65

	42
	1M3IPC6
	167.5
	436
	205
	474
	209
	186
	62

	43
	13EC6
	170.5
	467
	221
	507
	225
	192
	64

	44
	PC7
	183.5
	503
	219
	541
	225
	163
	59

	45
	C10
	201
	705
	145
	705
	145
	250
	10



* M = methyl; E = ethyl; P = propyl; IP = isopropyl; Cn = n-membered cycle


** values for the trans-isomer

Table 6.2 include formulas7,9,11 for the Cluj indices derived from the basic and reciprocal Cluj matrices (see Sect. 6.3). These formulas were derived by analyzing the corresponding Cluj matrices and transforming, where possible, the sums in simple formulas.


Note that the two variants, CJ and CF, are both calculable by the same formulas in the simple graphs: paths, cycles and stars. As the reader can see, in Table 6.2 the Cluj indices are symbolized by CJ.

6.2.2. Cluj Indices of Simple Cycles


In simple cycles, the edge-defined Cluj indices are very simple, as shown in Table 6.2, entries 5 and 6. The path-defined Cluj indices (entries 7 and 8) show a N mod 4 dependency7,9 and the formulas are still simple.

 Note that only the CJD indices depend on the parity of the cycle (by  z = N mod 2). 

The composition formula (6.5) also holds in cycle-containing graphs. From the formulas in entries 5, 7 and 6, 8 (Table 6.2) it results in
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The quantities k, y, z and N have the same meaning as in Table 6.2. It is obvious that I((M)  is the part of the Cluj index defined on paths larger than 1.

6.2.3. Graphs with Minimal IP(CJ() Value

As in the case of the Wiener index W, the  detour-Cluj index IP(CJ() shows its

minimal value7 in case of the complete graphs, KN (see the graph G6.1, Figure 6.1)
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Table 6.2. Formulas for Cluj Indices of Paths and Cycles   
	     Index
	Sums
	Final Relations
	 Examples

	     Paths:                      I(CJ) = I(CF);                       I(RCJ) = I(RCF).
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	  N = 11; 7.562

	    Cycles:                    I(CJ)=I(CF);                      I(RCJ) = I(RCF).

	  5   IE(CJD)
	           N(N - z)2 / 4
	 N  = 11; 275

	  6   IE(CJ() 
	           N
	 N  = 11; 11
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	  N  =   9;  450

  N  = 10;  705

  N  = 11; 1001

  N  = 12; 1470                                                                                                              
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	            (k + 1)N(4k2  + 3yk + 2k + 3y) / 6
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	  N  =   9; 3.125   

  N  = 10; 3.317

  N  = 11; 3.477

  N  = 12; 3.460                                                                                                                   
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	  N  = 11;  11

	  12  IP(RCJ()            
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k = [(N-1)/4];  y = (N-1) mod 4
	  N  =   9; 22.500   

  N  = 10; 25.556

  N  = 11; 28.722

  N  = 12; 32.000                                                                                                                


                     y = N mod 4;  z = N mod 2;   ((x) = int(exp(-t)t^(x-1), t = 0,..infinity;   

                       ( (x) = diff(ln(((x),x);   ( (n,x) = diff(( (x), x$n); ( (0,x) = ( (x).   

The minimal value, given by eq 6.9 is also obtained for star-triangulanes, G6.2, strips with odd girth g, G6.3, Mőbius strips (irrespective of g), G6.4, and dipyramids (of any g), G6.5. Note that the strips with even g, G6.6, do not have a minimal value for 
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are full Hamiltonian detour graphs,7 FH( (see Sect. 2.11.2) and, consequently, the nondiagonal entries in the CJ( matrix are unity. In such graphs, 
[image: image32.wmf])

(

)

(

D

=

D

CF

I

CJ

I

 and the edge-defined index 
[image: image33.wmf])

(

D

CJ

IE

 equals the number of their edges. Formulas7 for calculating the detour-Cluj indices in the above discussed graphs are given in Table 6.3. The formulas are given as functions of g. Also included in Table 6.3. are the classical detour indices, w and ww, as functions of 
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Figure 6.1. Graphs with minimal IP(CJ() value

Table 6.3. Formulas for Calculating Detour-Cluj* and Detour Indices 

of Some Particular Graphs
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6.3.  Distance  Extended  Cluj -Type  Indices


The Tratch's and cowork.12 extended distance matrix, E, can be interpreted as a distance extended Wiener matrix D_Wp, at least in acyclic structures (see Sect. 2.12). The D_Wp matrix is just the Hadamard product13  of the De and Wp  matrices. The half sum  of its entries gives a distance extended Wiener index. 


Similarly, Diudea6 performed the Hadamard product 

De ( UCJD = D_UCJD





                (6.10)
and the resulting distance extended Cluj matrix D_UCJD offered, in trees T, a new definition of the hyper-Wiener index WW (see eq 2.47 and also Chap. Topological Indices)


IP(D_UCJD)(T) = WW





                (6.11)

Various other combinations: D_M or (_M, M being a symmetric or unsymmetric Cluj matrix, were performed on trees or on cycle-containing graphs, by means of the CLUJ software program.


Since the Cluj matrices are, in general, unsymmetric, an index of the form 
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(eq 6.4) on the matrix D_UCJD would involve squared distances and promise a better selectivity
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Indeed, among the 2562 structures of the set of all unbranched cata-condensed benzenoid graphs with three to ten rings14 
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 showed no degeneracy. 

An extension of eq 6.10 to a 3D-De matrix6 (e.g., by using the geometric matrix, G) allows the construction of various 3D-distance extended matrices, such as G_UCJD (see Figure 2.19). They can offer 3D- sensitive indices (see Chap. Fragmental Property Indices).

 6.4.  Indices  Defined  on  Reciprocal  Cluj  Matrices

The half sum of entries in reciprocal matrix RM of a square matrix M is an index, referred to as a Harary-type index (see Sect. 4.3). The symbol used in ref9 is HM, where M recall the info matrix (i.e., the square matrix whose reciprocal entries give RM).


Because of many Cluj matrices (symmetric or not, edge-defined or path-defined),

we adopted here symbols of the type (6.1)-(6.4). Thus, IE(RCJD) denote an edge-defined index (i.e., an index) on the symmetric reciprocal Cluj-Distance matrix while IP2(URCJ() is a path-defined index (i.e., a hyper index) on the unsymmetric reciprocal Cluj-Detour matrix.


Table 6.2 includes formulas9,11 for the indices defined on reciprocal Cluj matrices. These formulas were derived by analyzing the corresponding Cluj matrices and transforming the sums in simple formulas. Some formulas for these Harary-type indices in cycles (entries 10 and 12) involve the well-known gamma, digamma and polygamma function, given at the end of Table 6.2. Numerical values of these formulas are also given. In path graphs, simple formulas could, however, not be derived.

A systematic testing has been undertaken of the sensitivity, S (see Chap. Topological Indices) of the indices defined on reciprocal Cluj matrices within the set of all cycloalkane isomers having ten vertices/atoms and three to ten membered cycles (376 structures).9 The study indicated that the sensitivity of IP(RCJD)  to distinguish among these isomers is about unity.9,14 Its discriminating ability is superior to that of the Wiener W (0,216) and hyper-Wiener WW (0,408) indices.

In the class of all unbranched cata-condensed benzenoid graphs with three to ten rings14 (2562 structures), IP(RCJD) showed S = 0.988.


In addition to an increased sensitivity, the Harary-Cluj indices showed good correlating ability. The boiling point of a set of 30 cycloalkanes9 correlated 0.978 with the classical Harary index, HDe and the Harary-Cluj index IP(RCJD). The viscosity of a set of 25 cycloalkanes14 with a saturated aliphatic side chain correlated 0.974 with IP(RCJD) and 0.996 when combined with the Wiener index, as lnW, and the IP(RCJ() index.

6.5.  Indices  Defined  on  Schultz -Cluj  Matrices

The Schultz matrices, SCH(G) (see Sect. 2.15) are related to the molecular topological index, MTI, or the Schultz index,15  (see Chap. Topological Indices). In the extension of Diudea and Randi(16 the Schultz matrix is defined as
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and a composite index (edge-defined or path-defined) can be calculated by
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A Schultz-extended number is walk matrix calculable as16,17
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When one of the M1 or M2 matrices is unsymmetric, the resulting Schultz matrix will also be unsymmetric. In such a case an index of the form I2(UM) can be derived
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Of course, the relation 
[image: image54.wmf])

(

2

)

(

UM

I

M

I

=

 (see Sect. 6.1) is preserved, with the condition  
[image: image55.wmf]T

UM

UM

M

)

)(

(

=

. Within this book, M1 is a symmetric matrix (e.g., A, De, (e) and M3 is an unsymmetric Cluj matrix (e.g., CJD, CF(). 

If we write now a Schultz-type index as
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the quantities IM1,A and IM1,M3 can also be viewed as composite indices.16,18  Table 6.4 lists values of IM1,A along with the hyper-Cluj IP2(UCJD) and Schultz-Cluj  IP2(USCH(De,A,UCJD)) index values for the octane isomers. It can be seen that IUCJD,A is the arithmetic mean of IDe,A and IWe,A indices as a consequence of the relations

Table 6.4. IP2(UCJD), IM1,A and IP2(USCH(De,A,M3)) Indices of Octane Isomers
	Graph*
	IP2(UCJD)
	IDe,A
	IWe,A
	IUCJD,A
	M3 = UCJD

	P8
	210
	280
	322
	301
	105977

	2MP7
	185
	260
	324
	292
	80240

	3MP7
	170
	248
	318
	283
	68553

	4MP7
	165
	244
	316
	280
	65252

	3EP6
	150
	232
	306
	269
	53945

	25M2P6
	161
	240
	326
	283
	59061

	24M2P6
	147
	228
	320
	274
	49804

	23M2P6
	143
	224
	318
	271
	47537

	34M2P6
	134
	216
	314
	265
	41753

	3E2MP5
	129
	212
	308
	260
	38668

	22M2P6
	149
	228
	330
	279
	50940

	33M2P6
	131
	212
	322
	267
	39884

	234M3P5
	122
	204
	320
	262
	33326

	3E3MP5
	118
	200
	314
	257
	32185

	224M3P5
	127
	208
	332
	270
	35717

	223M3P5
	115
	196
	326
	261
	29504

	233M3P5
	111
	192
	324
	258
	27501

	2233M4P4
	97
	176
	338
	257
	19885


     * M = methyl; E = ethyl.

(i(j [((UCJD)A + A(UCJD))/2 ]ij = (i(j [(DeA + AWe )/2 ]ij 

   = (IDe,A + IWe,A )/2 = IUCJD,A                              (6.18)
(see also Sect. 2.15 and 4.4). They were tested for correlating ability.18

The Schultz-Cluj composite indices showed a powerful ability to discriminate isomeric structures. A family of spiro-graphs showing degenerate sequences of terminal paths, TPS, all paths sequences, APS, distance degree sequences, DDS, detour degree sequences, (DS and cycle sequence, CyS and, consequently, degenerate indices based on these quantities was successfully separated by IP2(USCH(De,A,UCFD)) and IP2(USCH(De,A,UCJD)) indices (see Sect. 8.6.1, Table 8.14).
6.6.  Cluj  indices  of  dendrimers
Dendrimers are hyperbranched macromolecules, with a rigorous structure.10 The topology  of dendrimers is basically that of a tree (dendron in Greek means tree). The number of edges emerging from each branching point is called progressive degree, p.10,19  It equals the classical degree (, minus one:  p = ( - 1. 

A regular dendrimer has all its branching points of the same degree, otherwise it is irregular. In graph theory, dendrimers correspond to the Cayley trees or Bethe lattices.20,21

A tree has either a monocenter or a dicenter22 (i.e., two points joined by an edge ). Accordingly, a dendrimer is called monocentric (G6.7) and dicentric (G6.8), respectively (Figure 6.2). 
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             G6.8
Figure 6.2. A monocentric (G6.7) and a dicentric (G6.8) regular dendrimer

The numbering of orbits (i.e., generations) starts with zero at the core and ends with r,  which is the radius of the dendrimer (i.e., the number of edges along a radial chain, starting from the core and ending to the periphery).


A wedge is a fragment of a dendrimer resulting by cutting an edge in a dendrimer. 

6.6.1. Enumeration in Regular Dendrimers

A first problem in the topology of dendrimers is the enumeration of its constitutive parts: vertices, edges, and fragments.65,70 The number of vertices Ni in the ith orbit of a regular dendrimer can be expressed as a function of the progressive degree p and a parameter z: z = 1 for a monocentric dendrimer and z = 0 for a dicentric one
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For the core, the number of vertices is N0 = 2-z, and the number of external vertices (i.e., the vertices  on the rth orbit) can be calculated by
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The total number of vertices N in a dendrimer is obtained by summing the populations on all orbits
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A recursive formula relates the members of a dendrimer family
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The number of vertices in a wedgeal fragment Fi, starting at the ith orbit and ending at the periphery can be evaluated by
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The number of fragments (i.e., wedges) starting at the ith orbit equal the number of vertices lying on that orbit and is calculated by eq 6.19.

6.6.2. Cluj Indices of Regular Dendrimers

In regular dendrimers, Cluj indices are evaluated10 according to eqs 4.19 and 4.20, by using the fragmental enumeration (see above) . The procedure is illustrated in Figure 6.3. Note that Ni is actually Fi.
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	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	1
	0
	7
	7
	7
	7
	7
	7
	7
	7
	7

	2
	3
	0
	3
	3
	9
	9
	3
	3
	3
	3

	3
	3
	3
	0
	3
	3
	3
	9
	9
	3
	3

	4
	3
	3
	3
	0
	3
	3
	3
	3
	9
	9

	5
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1

	6
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1

	7
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1

	8
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1

	9
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1

	10
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0


IP2(UCJD) = A + B +  C = 237

A = N1(N1-1)/2 [F1]2 + N2(N2-1) [F2]2 

A = 3(3-1)/2 [3]2 + 6(6-1)/2 [1]2 = 42

B = n1[F1(N-F1)] + n2 [F2(N-F1)] + n2[F2(N-F2)] 

B = 3 [3·7] + 6 [1·7] + 6 [1·9] = 159

C = n1(n2-2)[F1·F2]

C = 3(6-2) [1·3] = 36

Figure 6.3. Calculation of IP2(UCJD) index of dendrimers

Recall that IP2(UCJD) = IP(CJD), where CJD is the symmetric Cluj matrix. Following the above procedure, one obtains:
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By virtue of the identity between Wiener and Cluj matrices, in acyclic graphs, the following identities: IE(CJD) ( WWe ; IP(CJD) ( WWWp hold. The same is true for the corresponding Harary-type indices: HWe ( IE(RCJD);  HWp ( IP(RCJD). 

Expansion of the above symbolic relations lead to the simple formulas:10

Monocentric dendrimers:

           IP(CJD) = {2p2r  (p2 -1)2 r2 + p2r (p2 -1)(p2 - 8p -5) r + 

                   ( p +1)( pr - 1)[ pr ( p2 + 10p + 3) - 2]} / 2( p-1)4

   (6.26)


    








           IE(CJD) = {[r(p+1)3 - 2(r+1)(p+1)2 + (p+1)]p2r + 2(p+1)2pr - (p+1)}(p-1)-3   (6.27)

Dicentric dendrimers:

           IP(CJD) = {4p2r+2  (p -1)2 r2 + 4p2r+2 (p- 4)(p -1)r + p2r+2 (p2 - 3p + 16) - 



       pr+1 (p2 + 10p + 5) + (p +1)} / (p-1)4


                          (6.28)

           IE(CJD) = [4p(2r+2)(p-1)r + (p-1)(p(r+1) -1)2 - 2p(pr -1)(3p(r+1) - 1)] (p-1)-3  
     (6.29)

Values of Cluj indices in regular dendrimers having p = 2 and 3, up to generation ten are listed in Table 6.5. Values for the corresponding Harary-Cluj indices are presented in Table 6.6.

From Table 6.6 one can see that the IE(RCJD) values decrease as the radius (i.e., generation) of dendrimer increases. For the family of dendrimers having the progressive degree 2, the limit of convergence is 0.6067 while for the family with the progressive degree 3, the limit is 0.7286, irrespective they are mono- or dicentric-dendrimers. The convergence is a characteristic feature of IE(RCJD) index. 

Table 6.5. Cluj Indices IE(CJD) and IP(CJD) in Regular Dendrimers

Having p = 2 and 3 and Generation up to 10.

	p
	r
	      IE(CJD)
	IP(CJD)

	
	
	z = 0 
	z = 1
	z = 0
	z = 1

	2
	1

2

3

4

5

6

7

8

9

10
	29

285

1981

11645

62205

312829

1510397

7084029

32518141

146825213
	9

117

909

5661

31293

160893

788733

3740157

17310717

78661629
	47

667

6195

46179

301251

1798531

10085123

53986819

278891523

1400838147
	12

237

2535

20427

139923

863523

4958787

27022467

141535491

718754307

	3
	1

2

3

4

5

6

7

8

9

10
	58

1147

16564

207157

2392942

26310703

279816808

2905693033

29637785506

298120420579
	16

400

6304

82336

975280

10897456

117191488

1226857792

12591244624

127267866832
	97

2842

55546

885067

12486859

162614932

2001654484

23632595701

270225628693

3012581235310
	22

862

18988

322684

4737346

63370330

795156568

9524050936

110124165742

1238679833686


Table 6.6. Cluj Indices IE(RCJD) and IP(RCJD) in Regular Dendrimers

Having p = 2 and 3 and Generation up to 10.

	 p
	r
	IE(RCJD)
	IP(RCJD)

	
	
	z = 0 
	z = 1
	z = 0
	z = 1

	2
	1

2

3

4

5

6

7

8

9

10
	0.91111

0.75700

0.67978

0.64248

0.62434

0.61544

0.61105

0.60886

0.60778

0.60724
	1.00000

0.80952

0.70526

0.65479

0.63034

0.61840

0.61251

0.60959

0.60814

0.60742
	8.24444

39.48428

171.93340

718.89205

2942.94684

11913.41433

47945.57042

192376.55943

770707.04503

3085243.85345
	4.00000

21.00000

93.99806

398.36215

1642.52530

6674.41687

26914.25133

108099.91432

433297.01294

1734996.10484

	3
	1

2

3

4

5

6

7

8

9

10
	0.91964

0.79410

0.75027

0.73578

0.73099

0.72941

0.72888

0.72870

0.72864

0.72862
	1.00000

0.82692

0.76122

0.73939

0.73219

0.72980

0.72901

0.72875

0.72866

0.72863
	17.41964

179.54978

1696.45922

15533.98437

140639.34503

1268302.06937

11422421.63083

102824974.44435

925494391.69444

8329658484.38390
	7.00000

77.12500

744.63142

6873.80590

62412.87672

563405.57044

5075774.57299

45697411.49634

411323103.15047

3702047217.72089


6.6.3. Enumeration in Triangulanes and Quatranes 

Triangulanes and quatranes10 are the line graphs (see Chap. 1 and Sect. 8.2.1) of the dendrimers with the progressive degree p = 2 and 3 respectively (i.e., the branching usually encountered in organic chemical structures). Their line graphs are lattices of complete graphs (of three and four vertices, respectively) generated around each branching vertex in dendrimer and then transformed into a dendritic spiro-structure (see Figure 6.4).
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       G6.9                                                                                        G6.10
Figure 6.4. A monocentric triangulane (G6.9) and a dicentric quatrane (G6.10)

A spiro-graph results by fusing a vertex of degree (i, belonging to a ring, with a vertex of degree (j, of another ring, for giving a spiro-vertex of degree (k = (i + (j in the resulted structure (analogue to spiranes in organic chemistry). 

In the line graphs of a dendrimer, the degree of a vertex 
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where pu and pv are the progressive degrees of the endpoints of the edge (u,v) and (i is just the degree of that edge in G. The branching points of a regular dendrimer have the same progressive degree, so that (i = 2p. For the external edges in G it results (i = p.


The progressive degree of the complete graph units in the line graphs of dendrimers in discussion is derived from their reduced graphs (i.e., the graphs resulted by replacing each unit by a point and then joining those points of which corresponding units have a common spiro-vertex). In triangulanes, p = 2 while in quatranes p = 3.

The number of vertices on the ith orbit in the reduced graph of the line graph of a regular dendrimer is given by
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where z = 1 for monocentric and z = 0 for dicentric triangulanes and quatranes.

The total number of vertices is obtained by summing the orbital contributions Ni, over all orbits (the core included) of the reduced graph
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which (after developing the sum) becomes
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By definition, the number of vertices in L(G) equals the number of edges or the number of vertices less one, in the corresponding dendrimer (having an additional generation, r+1, as compared to the reduced graph of  L(G))
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A recursive relation among the members of a family of L(G) in regular dendrimers is as follows
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The number of edges in L(G) can be counted by considering the line graph as a collection of spiro-complete graphs built up around each vertex of the corresponding dendrimer, till the (r-1)th generation. Since the number of vertices in a complete graph unit, equals (p+1) and its number of edges is combinations of (p+1) choose 2 and keeping in mind eq 6.21, the number of edges in the line graph of a regular dendrimer is
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where r in the right hand side of eq 6.36 is the radius of the reduced graph of L(G).

Vertices on a wedgeal fragment starting on the ith orbit are counted by
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The number of all vertices, N, number of vertices on the last added generation and the number of all edges in triangulanes and quatranes, up to generation ten, are listed in Table 6.7.

Table 6.7. Enumeration in triangulanes (p = 2) and quatranes (p = 3):


        Global vertex population, N , periphery orbital population, Nr, 

                                                    and number of edges, E.

	p
	r
	N
	Nr
	E
	N
	Nr
	E

	                      z = 1
	z = 0

	2
	1
	9
	6
	12
	13
	8
	18

	
	2
	21
	12
	30
	29
	16
	42

	
	3
	45
	24
	66
	61
	32
	90

	
	4
	93
	48
	138
	125
	64
	186

	
	5
	189
	96
	282
	253
	128
	378

	
	6
	381
	192
	570
	509
	256
	762

	
	7
	765
	384
	1146
	1021
	512
	1530

	
	8
	1533
	768
	2298
	2045
	1024
	3066

	
	9
	3069
	1536
	4602
	4093
	2048
	6138

	
	10
	6141
	3072
	9210
	8189
	4096
	12282

	3
	1
	16
	12
	30
	25
	18
	48

	
	2
	52
	36
	102
	79
	54
	156

	
	3
	160
	108
	318
	241
	162
	480

	
	4
	484
	324
	966
	727
	486
	1452

	
	5
	1456
	972
	2910
	2185
	1458
	4368

	
	6
	4372
	2916
	8742
	6559
	4374
	13116

	
	7
	13120
	8748
	26238
	19681
	13122
	39360

	
	8
	39364
	26244
	78726
	59047
	39366
	118092

	
	9
	118096
	78732
	236190
	177145
	118098
	354288

	
	10
	354292
	236196
	708582
	531439
	354294
	1062876


6.6.4. Cluj Indices of Triangulanes and Quatranes

Cluj indices are defined in any connected graph, so that it is tempting to calculate them for cycle-containing networks such as triangulanes and quatranes. A procedure similar to that described for dendrimers is illustrated in Figure 6.5 allowed the description10 of the dendritic line graphs with p = 2 and 3, according to the Cluj definitions (see Sect. 2.11). Note that, in dendrimers, as well as in triangulanes and quatranes, both CJ and CF Cluj indices give identical values.
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As can be seen, the edge-defined indices are identical both for distance- and detour-Cluj indices. Note the formal similarity between the relations for calculating the Cluj indices in dendrimers and those in their line graphs, particularly for the detour-Cluj indices (eqs  6.24; 6.25 and 6.39; 6.40). In the opposite, the formula for the distance-Cluj index IP(CJD), (6.38) is far more complicated. Expansion of the above symbolic relations did, however, not offer simple formulas. 

Values of Cluj indices in triangulanes (p = 2) and quatranes (p = 3) up to generation ten10 are listed in Tables 6.8. to 6.11.
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	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	1
	0
	7
	7
	7
	7
	7
	7
	7
	7
	7
	7
	7
	7

	2
	3
	0
	3
	3
	3
	11
	11
	3
	3
	3
	3
	3
	3

	3
	3
	3
	0
	3
	3
	3
	3
	11
	11
	3
	3
	3
	3

	4
	3
	3
	3
	0
	3
	3
	3
	3
	3
	11
	11
	3
	3

	5
	3
	3
	3
	3
	0
	3
	3
	3
	3
	3
	3
	11
	11

	6
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	1

	7
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1

	8
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1

	9
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1

	10
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1
	1

	11
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1
	1

	12
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0
	1

	13
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0


IP2(UCJ() = A + B +  C = 382

A = n0(n0 -1)/2 [F0]2 + n1(n1-1) [F1]2 

A = 4(4-1)/2 [3]2 + 8(8-1)/2 [1]2 = 82

B = n0[F0(N-2F0)] + n1[F1(N-2F0)] + n1[F1(N-2F1)] 

B = 4 [3·7] + 8 [1·7] + 8 [1·11] = 228

C = n0(n1-2) [F0 F1]

C = 4(8-2) [1·3] = 72

Figure 6.5. Calculation of IP2(UCJD) index of triangulanes


Table 6.8. Cluj Indices IE(CJD) and IP(CJD) of triangulanes (p = 2) 

                                and quatranes (p = 3) with Generation up to 10.

	p
	r
	IE(CJD)
	IP(CJD)

	
	
	z = 0
	z = 1
	z = 0
	z = 1

	2
	1
	194
	72
	946
	264

	
	2
	1546
	678
	12218
	4470

	
	3
	9754
	4626
	108874
	45186

	
	4
	54330
	26922
	793194
	353754

	
	5
	280698
	142938
	5100714
	2381706

	
	6
	1380602
	715962
	30157098
	14532330

	
	7
	6562298
	3447162
	167924266
	82787754

	
	8
	30426106
	16134906
	894215210
	448494378

	
	9
	138446842
	73950714
	4600711210
	2338518570

	
	10
	620826618
	333499386
	23034236970
	11833568298

	3
	1
	822
	264
	8679
	2046

	
	2
	13404
	4926
	243606
	74748

	
	3
	177996
	69456
	4677222
	1607484

	
	4
	2128314
	857910
	73818741
	26995314

	
	5
	23922498
	9836760
	1035358077
	393561786

	
	6
	258303288
	107632110
	13430112780
	5240628840

	
	7
	2712012312
	1140784032
	164846025516
	65548466040

	
	8
	27894481878
	11816462694
	1942134733659
	783264588510

	
	9
	282430156494
	120294475176
	22170706080627
	9040351900278

	
	10
	2824297224852
	1208172034974
	246843377284962
	101541238563540


Table 6.9. Cluj Indices IE(RCJD) and IP(RCJD) of triangulanes (p = 2) 

and quatranes (p = 3) with Generation up to 10.

	p
	r
	IE(RCJD)
	IP(RCJD)

	
	
	z = 0
	z = 1
	z = 0
	z = 1

	2
	1
	5.13997
	4.19048
	13.38442
	8.19048

	
	2
	9.23189
	7.15947
	48.71617
	28.15947

	
	3
	17.65167
	13.42958
	189.58507
	107.42764

	
	4
	34.59912
	26.11971
	753.49117
	424.48187

	
	5
	68.54440
	51.56906
	3011.49124
	1694.09436

	
	6
	136.45903
	102.50041
	12049.87337
	6776.91728

	
	7
	272.29997
	204.37886
	48217.87039
	27118.63019

	
	8
	543.98760
	408.14347
	192920.54704
	108508.05779

	
	9
	1087.36569
	815.67649
	771794.41072
	434112.68943

	
	10
	2174.12328
	1630.74441
	3087417.97674
	1736626.84925

	3
	1
	19.30857
	13.29808
	36.72821
	20.29808

	
	2
	55.94973
	37.59520
	235.49951
	114.72020

	
	3
	166.23298
	111.08109
	1862.69220
	855.71251

	
	4
	497.19102
	331.70877
	16031.17538
	7205.51469

	
	5
	1490.09927
	993.64410
	142129.44430
	63406.52082

	
	6
	4468.83511
	2979.46685
	1272770.90449
	566385.03730

	
	7
	13405.04630
	8936.94059
	11435826.67713
	5084711.51358

	
	8
	40213.68106
	26809.36364
	102865188.12541
	45724220.85999

	
	9
	120639.58575
	80426.63339
	925615031.28020
	411403529.78386

	
	10
	361917.29996
	241278.44285
	8330020401.68386
	3702288496.16374


Table 6.10. Cluj Indices IE(CJ() and IP(CJ() of triangulanes (p = 2) 

and quatranes (p = 3) with Generation up to 10.

	p
	r
	IE(CJ()
	IP(CJ()

	
	
	z = 0
	z = 1
	z = 0
	z = 1

	2
	1
	194
	72
	382
	120

	
	2
	1546
	678
	4214
	1626

	
	3
	9754
	4626
	34534
	14766

	
	4
	54330
	26922
	239046
	108630

	
	5
	280698
	142938
	1485702
	702630

	
	6
	1380602
	715962
	8574726
	4170054

	
	7
	6562298
	3447162
	46902790
	23282310

	
	8
	30426106
	16134906
	246373382
	124224774

	
	9
	138446842
	73950714
	1254012934
	640092678

	
	10
	620826618
	333499386
	6224179206
	3208516614

	3
	1
	822
	264
	1695
	462

	
	2
	13404
	4926
	38982
	12684

	
	3
	177996
	69456
	677910
	240348

	
	4
	2128314
	857910
	10093917
	3762066

	
	5
	23922498
	9836760
	136304229
	52472874

	
	6
	258303288
	107632110
	1721837676
	677965080

	
	7
	2712012312
	1140784032
	20726902668
	8297193144

	
	8
	27894481878
	11816462694
	240587843187
	97532921118

	
	9
	282430156494
	120294475176
	2714460814731
	1111411966854

	
	10
	2824297224852
	1208172034974
	29937528342642
	12356290538148


Table 6.11. Cluj Indices IE(RCJ() and IP(RCJ() of triangulanes (p = 2) 

and quatranes (p = 3) with Generation up to 10.

	p
	r
	IE(RCJ()
	IP(RCJ()

	
	
	z = 0
	z = 1
	z = 0
	z = 1

	2
	1
	5.13997
	4.19048
	38.72727
	20.19048

	
	2
	9.23189
	7.15947
	171.25362
	93.29280

	
	3
	17.65167
	13.42958
	718.24957
	397.70737

	
	4
	34.59912
	26.11971
	2942.32250
	1641.89496

	
	5
	68.54440
	51.56906
	11912.79889
	6673.79848

	
	6
	136.45903
	102.50041
	47944.95937
	26913.63882

	
	7
	272.29997
	204.37886
	192375.95057
	108099.30473

	
	8
	543.98760
	408.14347
	770706.43725
	433296.40480

	
	9
	1087.36569
	815.67649
	3085243.24622
	1734995.49742

	
	10
	2174.12328
	1630.74441
	12345822.02431
	6943615.07018

	3
	1
	19.30857
	13.29808
	178.75568
	76.29808

	
	2
	55.94973
	37.59520
	1695.70896
	743.87020

	
	3
	166.23298
	111.08109
	15533.24859
	6873.06652

	
	4
	497.19102
	331.70877
	140638.61404
	62412.14453

	
	5
	1490.09927
	993.64410
	1268301.33997
	563404.84065

	
	6
	4468.83511
	2979.46685
	11422420.90195
	5075773.84398

	
	7
	13405.04630
	8936.94059
	102824973.71565
	45697410.76760

	
	8
	40213.68106
	26809.36364
	925494390.96580
	411323102.42181

	
	9
	120639.58575
	80426.63339
	8329658483.65528
	3702047216.99226

	
	10
	361917.29996
	241278.44285
	74967553341.83228
	33318842928.83120
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