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 ABSTRACT 

Modeling the molar refraction and the chromatographic retention by using Szeged topological 
indices as molecular descriptors, is presented. 

 

 INTRODUCTION 
 Physico-chemical properties, such as the boiling point, molar refraction, critical pressure, 
viscosity, chromatographic retention, etc. are rather simple experimental available properties of 
chemical compounds. They are tabulated and may be used e.g., in  projecting industrial 
instalations. Sometimes, it happends that a given compound is toxic, or dangereus or simply not 
available. In such conditions, it is of interest to have a theoretical tool, say an equation, that can 
help one in obtaining a desired parameter by  structure-related calculations. In this respect, the 
topological indices (i.e., single numbers encoding the topology of chemical structures) were 
widely used in the last decade.    

In the present paper, we used the Szeged indices as molecular descriptors in modeling 
the molar refraction and the chromatographic retention of some organo-phosphoruc compounds. 
 
   
 SZEGED TOPOLOGICAL INDICES 

 Gutman has introduced the Szeged index,12 SZ, as  

Ie/p = ∑e  Ni,(i,j) Nj,(i,j)        (1) 

 where the quantities Ni,(i,j)  and Nj,(i,j)  represent the cardinality of the vertex sets lying 
closer to i and to j, respectively and are defined by 
 
 Ni,(i,j)  = {v v∈V(G); Div < Djv }      (2) 

 Nj,(i,j)  = {v v∈V(G); Djv < Div }      (3) 

In the above relations, V(G) denotes the set of vertices in a connected graph and Div , Djv  
are the topological distances (i.e., the number of edges on the shortest path) joining the vertices 
i and j , respectively, with a vertex  v. Vertices equidistant to i and j are not counted.  

When defined on edge,  (i.e., (i,j) is an edge, e), Ie is just the classical Szeged index,12 in 
the following symbolizsd by SZe .  When defined on path, ( (i,j) is a path, p), Ip is the hyper-
Szeged index,14 SZp. 
 The Szeged unsymmetric matrix, SZu , was defined by Diudea et al.14,18

  by analogy to 
the Cluj matrix,15-17 CJu,  
 
 [SZu ]ij  =  Ni,(i,j)         (4) 

 where Ni,(i,j)  has the meaning given by eq. 2. The diagonal entries are zero. SZu is a 



square array of dimensions NxN, in general unsymmetric. It allows the calculation of two Szeged 

indices, by 

 SZe/p   = ∑e/p [SZu]ij [SZu]ji       (5) 

 
 As an extension to SZu  , Szeged property matrices19-21 have been defined  

 

  [SZuP]ij  = Pi,(i,j)           (6) 

 Pi,(i,j)  =  f(Pv) v∈V(G);  Div  < Djv        (7) 

        f(Pv) = m ∑v Pv ;         (8) 

           case :  (a)   Pv = 1   ;         m = 1   (classical SZu matrix)   
 (b)   Pv = ∑v Av  ;    m = 1/12       ( SZuA matrix)             

f(Pv) = (Πv Pv )1/v   ; Pv = Xv  (group electronegativity) ( SZuX matrix)    (9) 

 
 Entries in a  Szeged property matrix are defined by a function f(Pv), evaluated on the 
vertices v which obey the Szeged index condition (see eq 12). The set of such vertices can be 
viewed as a fragment (i.e., a subgraph) since a molecular graph is alwais a connected one. Two 
types of  f(Pv) are here proposed: an additive and a multiplicative one. Only two cases of the 
additive function are here considered: 
 
(a) Pv = 1 (i.e., the cardinality) and the factor  m = 1; it is just the case of classical  
  SZu matrix. 

(b) Pv = ∑v Av  ;  m = 1/12 ; Av is the atomic mass and the matrix is SZuA . The factor m   
indicates that f(Pv)  is a a fragmental mass, relative to the carbon atomic mass.  

 The multiplicative function was used in calculating  group electronegativities, Xv , like EC 
(Sanderson-type group electronegativities22 ) for heteroatoms and fragments.  
 Indices are calculated on these matrices by the general relation 

 Ie/p = ∑e/p [SZuP]ij [SZuP]ji   ; I = SZ;  SZA;  SZX       (10)    

    

 MODELING THE MOLECULAR REFRACTION 

 In correlating tests,  a multivariable regression equation is used [34]: 
   

 Y = a + ∑i biXi        (11) 
 
where a and bi  are regression coefficients, Y is the modeled property and Xi independent 
variable (in paricular, topological indices). A satisfactory single variable regression is however a 
happy case. The quality of such an equation is expressed by the following statistics:  r  
(correlation coefficient), s (standard error), v(%) (the percent of variance) and  F ( Fischer ratio).  
 Molar refraction, MR,  is defined as 
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where n is the refraction index, M is the molecular mass and d is the density. It is obvious that  
Mr is parallel to the molar volume. An electronic dependence is included in  the refraction index. 
        A set of 10 pesticides, cyclic organo-phosphorus compounds (Table 1), was taken in this 
study. Statistics are presented in Table 2. 

 

Table 1. Szeged Indices and Molar Refractions for cyclic organo-phosphorus compounds 
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Table 2. Statistics of correlation equations: Y  =  a + ∑biXi , for the set of Table 1 

No Xi bi a r s v(%) F 
1 SZp 0.016 27.851 0.9634 2.868 7.074 103.242 

2 SZe 0.089 23.479 0.9587 3.041 7.500 90.961 

3 SZpA 0.011 25.855 0.9487 3.381 8.338 72.079 

4 SZeA 0.066 18.349 0.9370 3.736 9.214 57.575 

5 SZpX 0.481 11.606 0.6997 7.641 18.846 7.673 

6 SZeX -0.467 47.248 0.1135 10.626 26.208 0.104 

7 SZp 
SZpX 

0.019 
-0.157 

34.882 0.9727 2.651 6.539 61.604 

8 SZp 
SZeX 

0.016 
-0.631 

36.821 0.9755 2.516 6.206 68.762 

 
 From Table 2 one can see that the molar refraction of these compounds is well modeled 
by two descriptors: one is topological (SZp ) and anothe one is electronic (SZeX- the index 
waighted by electronegativity – entry 8, Table 2), the variance of  estimation being about  6%. 
This result is in agreement with the meaning of formulra 12. 
 

MODELING THE CHROMATOGRAPHIC RETENTION 

  
 The retention chromatographic index, ICHR, is a measure of the interaction between a 
given compound and two phases: a mobile phase (i.e., the eluent) and a stationary one.  This 
interaction is function of  more than one factor, the polarity, lipophylicity and  size included. 
These factors are joined in a “global” molecular property, that is the chromatographic index. It is 
easily seen that the values of ICHR vary with varying the chromatographic systems, pressure and 
temperature. This is the reason that, in correlating studies, values ICHR from a single experient 
are requested.  

A set of 10 herbicides (Table 3) was modeled by the Szeged indices. The statistics are 
given in Table 4. 
 

Table 3.  Retention chromatographic index, Ichr , and  Szeged indices  

for some organo-phosphorus herbicides 

No. Compound Structure ICHR+ SZe SZeA SZpE SZeE 
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104.590 
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24.957 

 

(+)  1995/1996  HP Environmental Solutions Catalog, p. 88. 

 

 

Tabelul 4. Statistics of correlation: Y  =  a + ∑biXi , for the set in  Table  3. 

 

No Xi bi a r s v(%) F 
1 SZpX 0.1068 -0.5862 0.8982 1.428 11.743 33.381 



2 SZeX 1.1797 -10.7168 0.9388 1.118 9.198 57.460 

3 SZeX 

SZeA 

1.0678 

0.0026 

-10.7940 0.9506 1.0776 8.862 32.837 

 

          Table 4 shows that the retention chromatographic index depends both on the size 
(through the mass weighted index, SZeA) and electronic characteristics (by  SZeX). The 
correlation is satisfactory (r= 0.951,  v < 9% - entry 3, Table 4). 
   Szeged indices have proved here their ability in modeling physico-chemical properties 
of organo-phosphorus compounds. 
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