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Abstract This study discusses some statistical methods

used in quantitative structure–property relationships mod-

el’s validation and comparison. The paper also introduces a

series of online tools for model’s validation. The imple-

mented diagnostic tool that incorporated analytical

approaches are exemplified on a series of models which

estimate and predict the boiling points of a sample of 73

alkanes. The used parameters and methods are presented,

and some reference values are provided.

Keywords Structure–property relationships (SPR) �
Molecular descriptors family (MDF) � Model validation �
Online application

Introduction

Structure–property relationships (SPR) and quantitative

structure–property relationships (QSPRs), collectively

referred to as (Q)SPRs, are theoretical models usually used

to predict the physicochemical properties of chemicals

from the knowledge of structure (Rogers and Hopfinger

1994). The method has been used since 1868, when Crum-

Brown and Fraser (1868) studied the physiological action

of the ammonium salts. Twenty-five years later, Richet

studied the relationship between chemical structure and

oil–water partition coefficient (Richet 1893). Since then,

many properties were modelled using different approaches

(Hemmateenejad 2006; Buchwald and Bodor 2002).

The processes by which the reliability (yielding the same

or compatible results for a compounds or class of com-

pounds by applying the same method) and the relevance

(the ability to correctly predict the property of interest) of a

QSPR model is tested are known as compulsory models

validation methods (Worth and Cronin 2004). The main

statistical methods used for models validation are (Tichy

2005): regression analysis, factor analysis, principal com-

ponent analysis, cluster analysis, pattern recognition

analysis, discriminant analysis, artificial neuron networks,

and cybernetic techniques (self-learning machine, genetic

algorithms, linear surface decision). The cross-validation

analysis techniques, as leave-one-out (LOO) analysis,

leave-many-out analysis (Tropsha et al. 2000) and boot-

strapping (Wehrens et al. 2000) are also used for models

validation.

The main goal of the paper was to highlight and to

exemplify the analytical methods transposed into online

programs useful in (Q)SPR models assessment. In so

doing, a data set of 73 alkanes were investigated by ana-

lyzing one previously reported SPR models (Toropov et al.

1998) and two models obtained on the same data set by

applying of the molecular descriptor family on the struc-

ture–property relationships approach (Jäntschi 2005).

Experimental

Models for alkanes boiling points

Toropov et al. reported a series of nine QSPRs obtained by

using the 3D weighting of molecular descriptors (Toropov

et al. 1998) which analyzed the experimental boiling points
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of a series of 73 alkanes (all alkanes isomers with three,

four, five, six, seven, eight and nine carbons). The best

performing model and associated statistics are presented in

Eq. (1):

Bp �Cð Þ¼727:26 �20:76ð Þ�3D0v�19:46 �0:9ð Þ�3DSRW2

þ7:99 �0:39ð Þ�M2�779:42 �20:08ð Þ
n¼73; r¼0:9986; s¼2:17;F¼8340

ð1Þ
where Bp(�C) is the boiling point, 3D0v and 3DSRW2 are

method of ideal symmetry (MIS) indices, and M2 is a 3D

modification of the Zagreb index; n the volume of the

sample, r the correlation coefficient, s standard error of the

estimate, and F Fisher parameter.

The same series of alkane’s experimental boiling points

has been investigated by using the molecular descriptors

family on the structure–property relationships approach

(Jäntschi 2005). The MDF-SPR approach proved its use-

fulness in estimation and prediction of a series of activities

and properties (Jäntschi and Bolboaca 2007). The MDF-

SPR models and associated statistics are presented in Eqs.

(2) and (3):

Ŷ1D ¼ �507:95þ 188:40 � lbMdsHg

r2MDF ¼ 0:9913; FMDF ¼ 8048 ðp\0:0001Þ;
sMDF ¼ 3:81; n ¼ 73

ð2Þ

Ŷ2D ¼ �323:02� 105:92 � liDmEHt þ 17:76 � IADmwHt
r2MDF ¼ 0:9982; FMDF ¼ 19344 ðp\0:0001Þ;
sMDF ¼ 1:75; n ¼ 73

ð3Þ
where Ŷ1D is the estimated boiling point by the MDF-SPR

model with one descriptor; Ŷ2D is the estimated boiling

point by the MDF-SPR model with two descriptors;

lbMdsHg, liDmEHt and IADmwHt are molecular

descriptors generated and calculated based on information

extracted from alkanes chemical structure; r2MDF squared

correlation coefficient of the MDF SPR model; FMDF

Fisher parameter at a significance level of 5%; sMDF stan-

dard error of the estimate; and n sample size.

Models assessment methodology: evaluation,

validation, comparison

The following approaches were proposed and implemented

for models validation and comparison. Software is hosted

by AcademicDirect domain and could be freely used from

http://l.academicdirect.org.

1. Evaluation:

• Correlation coefficient:

It is a simple statistical measure of the

relationship between dependent variable and

one or more independent variables. According

with the type of experimental data, one of the

followings methods could be applied: Pearson,

Spearman, semi-quantitative, Kendall’s tau

(a, b, or c), or Gamma (Bolboaca and Jäntschi

2006).

It takes value between –1 and +1. The value of

zero indicates no relationship while values of ±1

indicate a perfect fit. A value greater than 0.5 is

generally consider as good, while a value greater

than 0.9 is consider as excellent.

It is use as measure of the statistical fit of a

regression-based model, but the preferred form

is its squared value (coefficient of determination

–r2). The closer the value of determination

coefficient is to 1, the better the model is.

It is a measure of collinearity: linear relationship

exists among some or all independent variables

in a regression model. Collinearity and correla-

tion are not equivalent concepts; thus,

collinearity implies correlation, but correllation

does not necessary implies collinearity.

Implemented software: see /Chemistry/SARs/

MDF_SARs/rank/ and /Statistics/linear_depen-

dence/ (from http://l.academicdirect.org).

• Linear regression: The parameters used to analyze

a linear regression model are:

Correlation coefficient, determination coefficient

(the proportion of variation in dependent vari-

able that is explained by its linear relationship

with independent variables)—see above

Adjusted correlation coefficient

Standard error of the estimate (the average error

predicting the dependent variable by means of

the regression equation)

Fisher parameter and associated significance:

give information about statistical significance of

the regression model

Student’s t Stat (refers to a test of the hypothesis

that the regression coefficients and slope are

significantly different from zero)

Implemented software: /Statistics/multi_regression/

2. Validation:

• Leave-one-out analysis:

An internal cross validation technique

Employ n training sets and from each of these

one compound is excluded
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For each training set a model is obtained and then

it is used to predict the property/activity of

excluded compound

The cross validation LOO score (r2cv-loo) is

obtained; for its interpretation see coefficient of

determination

The difference between coefficient of determi-

nation (r2) and cross validation LOO score

(r2cv-loo) ought not to exceed 0.3. A difference

greater than or equal to 0.3 could indicate: an

overfitted model, the presence of irrelevant

independent variables, and/or the presence of

outliers (an observation that lies an abnormal

distance from other values in a sample)

Implemented software: /Chemistry/SARs/MDF_

SARs/loo/

• Training versus test analysis:

A validation technique

The compounds are randomly spitted in training

and test sets

For each training set a model is obtained and is

used to predict the property/activity of com-

pounds from test set

The model is consider valid and stable if the

determination coefficient on training set (r2tr) is

not statistically different by the determination

coefficient on test set (r2ts) and the values of the

correlation coefficients respect the 95% confi-

dence intervals of the squared correlation

coefficient of the model

Implemented software: /Chemistry/SARs/MDF_

SARs/qsar_qspr_s/

3. Comparison:

• Correlated correlation analysis:

A method of comparison two correlation coef-

ficients taking into account the sample sizes on

which those were obtained (Steiger 1980)

Hotteling’s t/Steiger’s Z test: test the correlated

correlation at a significance level of 5%

Fisher’s Z-test: test differences between correla-

tion coefficients obtained on two different

groups (at a significance level of 5%)

The statistical approaches were applied on the

models from Eqs. (2) and (3), and where

appropriate from Eq. (1) too.

Results and discussion

Models evaluation (regression coefficients, residuals,

other statistics)

Depending on the type of analytical techniques used

(Q)SPR analysis had as results a set of parameters that

provide information about the model(s). By using the

linear regression techniques, regression equations con-

sisting of coefficients are produced. The coefficients had a

simple and appealing meaning. Note that, in accordance

with the choice of regression method, there are other

parameters that deserve attention when a (Q)SPR model is

interpreted.

Let us note Y as the endpoint of interest (in our case the

boiling point of alkanes) and as X the variables used in Eqs.

(1)–(3). The main regression coefficients, residuals, and

model statistics performance for models presented in are

presented in second and third equations Table 1.

Analyzing the model from Eq. (3) it can be observed

that the complete data set comprises 73 compounds, two X

variable (two molecular descriptors, liDmEHt and IAD-

mwHt, respectively) and one Y variable (the boiling point).

The two X variable are not significantly correlated with

each other, the squared correlation coefficient between

them being of 0.2064. The multiple linear regression of the

model from Eq. (3) is summarize in Fig. 1.

Figure 1a shows the relationship between observed and

estimated by Eq. (3) endpoint. By analyzing the plot it could

not be identified any obvious outliers, but it can be observed

that in 3 cases out of 73 the values were negative. The

Table 1 Informative models parameters for Eqs. (2) and (3)

Equations Parameter Coef [95%CI] SEcoef tcoef r [95%CIr] r2adj RSS

(2) Intercept –507.96 [–521.70 to –494.22] 6.89 –73.70* 0.9956 [0.9929 to 0.9972] 0.9911 1033

Slope 188.40 [184.22 to 192.60] 2.10 89.71*

(3) Intercept –323.02 [–331.55 to –314.54] 4.27 –75.72* 0.9991 [0.9985 to 0.9994] 0.9981 213

of liDmEHt –105.92 [–107.39 to –104.48] 0.73 –145.38*

of IADmwHt 17.76 [17.08 to 18.44] 0.34 51.96*

r, Correlation coefficient; [95%CI], 95% confidence interval; RSS, residual sum of squares; coef, coefficients of the regression models (see

Eqs. (2)–(3)); SEcoef, standard error of coefficient; tcoef, Student t parameter for coefficient; [95%CIr], 95% confidence interval for correlation

coefficient

* p\ 0.0001
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normal probability plot of residuals (Fig. 1b) was drawn in

order to identify the pinpoint outliers. In the literature, it is

considered that all observation points that lie on imagined

straight line that goes through zero residual and 0.5 prob-

ability had approximately normal distributed residual. Any

point that falls off the imagined straight line has a residual,

which informs that the difference between measured and

estimated endpoint is much larger or smaller then expected

based on assumption of normally distributed residuals. Note

that this is just an empirical interpretation of normality.

Analyzing Fig. 1b it could be observed that there are seven

compounds in the right-top corner (from left to right:

2,3,3,4-MMMMC5, 2,2,3,3-MMMMC4, 2,2,3-MMEC5,

3,5-MMC7, 2,3,4-MMMC6, 3,3,4-MMMC6, and 2,2,3,

4-MMMMC5, respectively) of the graphic and three in the

left-bottom corner (from left to right: 2,4-MEC6, 2,4,

4-MMMC6, and 3M-C6, respectively). It could be consid-

ered that these ten compounds are outliers. By removing

them from the dataset (*14% compounds removed) a

squared correlation coefficient of 0.9994 and a standard

error of the estimate of 1.07 are obtained for this model

(Fisher parameter 46921, p\ 0.0001). As a result of

removing the ten compounds considered ‘‘outliers’’, the

squared correlation coefficient it is improved with 0.0012,

which could not be considered a significant improvement.

As a conclusion of the model evaluation, it can be said that

the model presented in Eq. (3) is a good and accurate model.

Models validation

It is well known that in modelling, in some cases, the

removal of compound(s) and/or variable(s) that ‘‘do not fit’’

according to some subjective criterion could significantly

improve a model. The model obtained by removing the

compounds and/or variables that ‘‘do not fit’’ had as main

disadvantage the absence of representatively for additional

compounds. A measure of the improvement is the good-

ness-fit of the model, usually expressed as the correlation

coefficient and associated squared value. The main prob-

lem of the goodness-fit of a model is that with sufficiently

many independent variables could be easily obtain a

squared correlation coefficient close to the optimal value of

1. A model is proper to be investigated for its goodness-of-

fit when the sample size of investigated compounds is four

or five times greater than the number of independent

variables, n = 5v, where n is the volume of the sample size

and v the number of variables used by the model (Hawkins

2004). All investigated models presented in Eqs. (1)–(3)

were valid from the point of view of ration between sample

size and number of independent variables. The assessment

of the predictive power of the models from Eqs. (2) and (3)

was done by using two techniques: cross validation LOO

approach and training versus test analysis.

Leave-one-out analysis

The LOO analysis software has been used in order to

obtained the cross validation LOO score for the models

from Eqs. (2) and (3). The results are presented in Table 2.

The value of the obtained r2cv-loo (see Table 2) shown

that the models from Eqs. (2) and (3) are excellent models

in terms of estimation capabilities. The value of the dif-

ference between r2 and r2cv-loo indicated the absence of any

irrelevant variable in the investigated models or any out-

lying data points. This observation sustained also the

absence of the ‘‘possible’’ outlier’s identified in Fig. 1b.

Fig. 1 a Relationship between observed and estimated endpoint by Eq. (3). b Normal probability plot of residuals
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Training versus test analysis

Two different training versus test analysis approaches were

applied for validation of the model presented in Eq. (3):

(1) The sample of compounds was randomly spitting into

training and test set by using the training vs. test

experiment software. A number of 24 experiments

were conducted and the results are presented in

Table 3.

(2) Ten compounds that were suspected to be outliers by

analyzing the graphical representation presented in

Fig. 1b (2,3,3,4-MMMMC5, 2,2,3,3-MMMMC4,

2,2,3-MMEC5, 3,5-MMC7, 2,3,4-MMMC6, 3,3,4-

MMMC6, 2,2,3,4-MMMMC5, 2,4-MEC6, 2,4,4-

MMMC6, and 3M-C6, respectively) were included

into test set while the other compounds formed the

training test.

As it can be observed from Table 3, all investigated models

were statistical significant (p\ 0.05). A deepen analysis

revealed that all correlation coefficients in training sets

respected the 95% confidence intervals of Eq. (3). In 6

cases out of 24 the correlation coefficient obtained in test

set was greater than the upper boundary of the 95%

confidence intervals obtained by Eq. (3). Moreover, in 95

percent of cases, the coefficients of the models (Table 3)

respected the coefficient 95% confidence intervals of the

model from Eq. (3) (Table 1). In 5 cases out of 24, the

correlation coefficients obtained in training and test sets

were statistically different (note that just in one case the

Table 2 Results of leave-one-out analysis

Equations r2 r2cv-loo Fcv-loo r2 – r2cv-loo

(2) 0.9913 0.9908 7654* 0.0004

(3) 0.9982 0.9980 17562* 0.0002

* p\ 0.0001

Table 3 Training versus test analysis on model from Eq. (3): results on 24 experiments

Ŷ = a0 + a1�liDmEHt + a2�IADmwHt Training set Test set Zrtr–rts

a0 a1 a2 ntr r2tr Ftr nts r2ts Fts

–327.86 –104.37 18.30 40 0.9989 16370� 33 0.9971 4664� 1.87�

–325.06 –106.50 17.83 41 0.9966 5533� 32 0.9991 13997� 2.48�

–322.09 –105.41 17.73 42 0.9985 13212� 31 0.9982 6045� 0.24*

–320.57 –107.00 17.46 43 0.9978 9243� 30 0.9988 8219� 1.22*

–321.72 –106.30 17.64 44 0.9984 12938� 29 0.9980 4464� 0.45*

–317.82 –107.05 17.23 45 0.9981 10952� 28 0.9981 6383� 0.00*

–324.34 –105.55 17.91 46 0.9980 10810� 27 0.9986 8356� 0.70*

–331.61 –105.53 18.44 47 0.9985 14383� 26 0.9975 4169� 0.94*

–335.03 –105.28 18.72 48 0.9986 16162� 25 0.9972 3605� 1.33*

–324.32 –106.20 17.81 49 0.9982 12584� 24 0.9983 5788� 0.00*

–324.49 –106.04 17.83 50 0.9967 7024� 23 0.9996 15570� 4.01�

–329.76 –106.00 18.25 51 0.9979 11593� 22 0.9986 5436� 0.83*

–320.98 –106.07 17.60 52 0.9981 12880� 21 0.9985 5510� 0.41*

–322.94 –106.33 17.70 53 0.9971 8506� 20 0.9993 12350� 2.36�

–324.79 –106.55 17.83 54 0.9980 12533� 19 0.9994 5287� 2.10�

–322.49 –105.94 17.72 55 0.9982 14567� 18 0.9981 3997� 0.18*

–324.48 –105.75 17.88 56 0.9978 11799� 17 0.9987 5353� 0.75*

–320.21 –106.17 17.51 57 0.9976 11117� 16 0.9989 5082� 1.12*

–325.53 –106.16 17.91 58 0.9978 12430� 15 0.9991 5682� 1.24*

–323.75 –105.80 17.83 59 0.9983 16044� 14 0.9977 2387� 0.44*

–324.08 –106.40 17.79 60 0.9981 15104� 13 0.9993 3092� 1.34*

–327.75 –105.81 18.12 61 0.9980 14601� 12 0.9989 3282� 0.71*

–321.58 –105.75 17.67 62 0.9984 18507� 11 0.9974 733� 0.65*

–323.89 –105.80 17.84 63 0.9980 15306� 10 0.9985 2164� 0.28*

a0, a1, and a2, regression coefficient; ntr, number of compounds in training set; r2tr, squared correlation coefficient in training set; Ftr = Fisher

parameter for regression model obtained in training set; nts = number of compounds in test set; r2ts = squared correlation coefficient in test set;

Fts = Fisher parameter for regression model obtained in test set

* p ‡ 0.05; � p\ 0.05; � p\ 0.0001
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correlation coefficient obtained in test set was less than the

correlation coefficient obtained in training set for ntr = 40,

see Table 3). The graphical representation of estimated

versus observed endpoint when the sample size in training

set was equal with 2/3�n (n = 73) is presented in Fig. 2a.

The null hypothesis that the correlation coefficient

obtained in training set is not significantly different by the

correlation coefficient obtained in corresponding test set

was tested by applying the Fisher Z test at a significance

level of 5%. As it can be observed from Table 3, significant

differences were identified in 5 cases out of 24. In all sit-

uations, the correlation coefficient obtained in test set was

significant statistic greater compared with the correlation

coefficient obtained in training set (see Table 3).

The second strategy on training versus test analysis was

applied and the graphical representation from Fig. 2b was

obtained. Starting with the observations obtained from

Fig. 1b, the ten compounds considered as ‘‘possible’’ out-

liers were included in the test set while the others were

included in the training set. The equation obtained in train-

ing set Eq. (4) and associated statistical parameters were:

Ŷ2D�tr¼�322:94�105:18 � liDmEHtþ17:83 �IADmwHt
r2¼0:9992;F¼39949ðp\0:0001Þ; s¼1:17;n¼63

ð4Þ
The 95% confidence intervals of the correlation

coefficient obtained in training set [0.9993–0.9997] did not

overlap on the 95% confidence intervals of the correlation

coefficient obtained in test set [0.9427–0.9969] suggesting a

significant difference, but a good model (a correlation

coefficient of 0.9867, and an associated squared value of

0.9736). The graphical representation of the models is

presented in Fig. 2b.

Models comparison–correlated correlation analysis

The correlated correlation analysis was performed to

identify differences between models. Note that, the corre-

lations being compared were not independent, they sharing

one variable (the endpoint). The analysis was able to

revealed whether two correlations (obtained by two dif-

ferent models) hade different strengths (the Steiger’s Z test

was applied at a significance level of 5%, see Table 4).

Analyzing the results presented in Table 4, it can be

observed that the relationship between molecular descrip-

tors and boiling points, Eq. (3), is strengthens comparing

with the relationship between descriptors and boiling points

Eq. (1). Note that, better performances in terms of strength

are obtained by a model with two descriptors, Eq. (3), then

by a model with three descriptors Eq. (1). The strength is

also significantly greater when two molecular descriptors

are used instead of one when models are obtained by using

the molecular descriptors family on the structure–property

relationships approach (see Table 4, rEq (2) – rEq (3)).

In (Q)SAR/(Q)SPR modelling it is easy to manipulate

data such way that an apparently good model to be

obtained. The most widely used statistical technique is

multiple regression analysis, for its ability in establishing a

correlation between independent variables and an endpoint.

However, it is of crucial importance to realize the differ-

ence between models’s fit and prediction ability. The fit

tells how well are able to reproduce the endpoint data of a

Fig. 2 a Relationship between observed and estimated/predicted endpoint (nts = 1/3 n). b Relationship between observed and estimated/

predicted endpoint (nts = 10)
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set of compounds. This could be obtained easily with many

variables or by removing the compounds and variables that

do not fit according to some empirical criterion. Fortu-

nately, the prediction ability (measures of how accurately

the data of new compounds not previously used in the

obtained model can be predict) is not as easy to manipulate.

Thus, the (Q)SAR/(Q)SPR models that are fitted it is

important to be validate in order to verify if had real pre-

dictions abilities. At least two standard ways of validation

the model can be applied. The most exact way, considered

by many authors, is by external validation, when a new test

sample not used in the model development is investigating.

The second method is by applying LOO cross-validation

method and training versus test analysis, when the entire

sample of available compounds is used both to fit the

model and to assess its validity. The last two methods are

most suitable for the MDF SPR models, because according

with the methodology of descriptors generation and cal-

culations the same family of descriptors is obtained on all

compounds or on a part of the interest compounds.

Concluding remarks

A clear methodology for models evaluation that to com-

prise, as was illustrated in the paper, evaluation, validation

and comparison methods is necessary any time when

(Q)SPR models are reported.

Related to linear regression models, correlation coeffi-

cients (Pearson, Spearman, Semi-Quantitative, Kendall’s

tau (a, b, or c), or Gamma), coefficient of determination

(squared correlation coefficients), Fisher (F), Student

(Pearson, Spearman, and Semi-Quantitative) and Z statis-

tical tests define the measure of collinearity. To these are

adding adjusted correlation coefficient, standard error of

the estimate, regression model significance and regression

coefficients and slope analysis complete the model analy-

sis. Regarding models validation, two instruments (LOO

analysis and training versus test analysis) were applied on

the investigated models. The comparison of the models is

maybe the most difficult task. But, at least one method was

proved its usefulness: correlated correlation analysis.

The (Q)SPR models will have an important place in

future chemical management as priority settings, risk

assessment, classification and labelling. Statistical methods

had an important place in (Q)SPR/(Q)SAR models ass-

essment and the implemented software help researchers all

over thee world to validate the obtained models.
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et de ses filiales (C. R. Seances Soc. Biol. Fil.) 45:775–776

Rogers D, Hopfinger AJ (1994) Application of genetic function

approximation to quantitative structure–activity relationships

and quantitative structure–property relationships. J Chem Inf

Comput Sci 34:854–866

Steiger JH (1980) Tests for comparing elements of a correlation

matrix. Psychol Bull 87:245–251
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Table 4 Steiger’s Z test: results

� p\ 0.05; * p ‡ 0.05

Eq. (1)–Eq. (2) Eq. (1)–Eq. (3) Eq. (2)–Eq. (3)

Y - ŶEq(2) 0.9956 Y - ŶEq(3) 0.9991 Y - ŶEq(3) 0.9991

Y - ŶEq(1) 0.9983 Y - ŶEq(1) 0.9983 Y - ŶEq(2) 0.9956

ŶEq(1) - ŶEq(2) 0.9957 ŶEq(1) - ŶEq(3) 0.9991 ŶEq(2) - ŶEq(3) 0.9976

Steiger’s Z –4.24* Steiger’s Z 2.80� Steiger’s Z 7.02�
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