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Classical Approaches of Genetic Algorithmsand Their Suitability
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Genetic agorithms derived from observations of nature and simu-
lation of artificial selection of organismswith multipleloci that control
a measurable trait. To date, genetic algorithms evolved into complex
and strong informatics tools able to deal with hard problems of decision,
classification, optimization and simulation. A series of studies reported
biotechnology hard problems solved using genetic algorithms. In this
context, the aim of the present articleisto introduce genetic algorithms
and to present their suitability for biotechnology hard problems. Impor-
tant results are reported in the available literature that deal with the
application of genetic algorithmsfor biotechnology process modelling.

Key Wor ds: Geneticalgorithms, Hard problems, Processesmodelling,
Kinetic models.

INTRODUCTION

Any problem which hasits complexity and the complexity of agorithms applied
to find the optimum solution differ in terms of time (time complexity e.g., the
number of transitions from start to the end, hopefully with the correct answer) and
space (space complexity e.g., amount of random access memory required to the
program for run) from one approach to another. A hard problemisone for which all
algorithms that solve it are of high complexity. The problems with exponential
complexity are also considering hard because even the best algorithm is used, it
will probably be unusable on real-world instances'. If a problem is hard, then the
search for the optimum solution often goes into out-of-time for real world applica-
tions. Besides, alarge set of problems encountered in practice do not necessarily
call for the optimum. Because most of the hard problems subsist from many years,
for some of them one or several heuristics have already been formulated. These are
rules of thumb recipes for solving a particular problem, usually based on common
sense and avoiding obvious mistakes. Three heuristics applicable to a wide range
of hard problems, known as meta-heuristics, were developed. All three are stochastic
in nature and two of them are based on natural processes that have been taking
place such as tabu search?, simulated annealing® and genetic algorithms’.
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In regards of genetic algorithms (GAS) history, the computer simulations of
evolution started with the work of NilsAall Barricelli®. Shortly later, the Australian
quantitative geneticist Alex Fraser published a series of papers on simulation of
artificial selection of organisms with multiple loci controlling a measurable trait®.
Fraser'ssimulationsincluded all of the essentia elementsof modern genetic algorithms.

Genetic algorithms (GAS) are adaptive heuristic search algorithm developed to
mimic some of the processes observed in natural evolution with theideato usethis
power of evolution to solve optimization problems. Genetic algorithms are designed
to simulate processes in natural systems necessary for evolution, specially those
follow the principles first laid down by Charles Darwin of survival of the fittest.
Since in nature, competition among individuals for scanty resources results in the
fittest individuals dominating over the weaker ones. Genetic algorithms are imple-
mented as computer simulations in which a population of abstract representations
(called chromosomes or the genotype of the genome) of acandidate solutions (called
individuals, creatures, or phenotypes) subject to an optimization problem which
evolves toward better solutions. Genetic agorithms simulates the survival of the
fittest among individual s over consecutive generation for solving the problem. Each
generation consistsof apopulation of character stringsana ogousto the DNA chromo-
somes. Each individual represents apoint in a search space and a possible solution.
Theindividualsin the population are then made to go through a process of evolution.
Genetic algorithmsis based on an analogy with the genetic structure and behaviour
of chromosomes within a population of individuals.

The genetic algorithms were applied to the hard problems from many scientific
fieldssince popular inthe early 1970s": computer science and engineering®*?, agricu-
[ture****, medicine and chemistry*=*.

The aim of this study was to illustrate how genetic algorithm can be used to
solve hard problems from the biotechnology field. The study includes a classical
approach, which is minted to prepare the arena for genetic algorithms. Sinceis no
unique approach to solve a problem, the comparison between different approaches
were revea ed.

EXPERIMENTAL

Natural aswell as controlled processes evolve through a mechanism. If it refers
to chemistry, then the mechanism is about explaining the pathway of a reaction,
whilst in biology is about explaining how afeatureis created. Starting from a bio-
chemistry approach®, the fast reaction between copper and thiosulfate ions was
investigated®. The formulation of the kinetic problem isasfollows: (i) two reactants
(A and B) through forming of an intermediary X lead to the products (P), (ii) the
intermediary X concentration can be correlated with an observed absorption of
light intensity at a given wavelength (430 nm) using the well known Lambert-Beer
relationship®,(iii) asit isin any genera kinetics study, of particular interest is to
obtain the reaction rates and partial orders.
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Model formulation starts assigning of unknown reaction rates and orders for
every elementary reaction of the process and writing of the reaction kinetics. Thus,
for areaction with pre-equilibrium, following chemical reactions and mathematical
equations applied,: A + B - X (d[X]/dt = ko [A]"[B]'Y); X — A + B (d[X]/dt =
ki [X]*%); X - P(d[X]/dt = -ko[X]**), where[-] denote concentration in the aqueous
solution. A mass conservation principleis applied if the process evolve in a controlled
environment and startsfrom two initial concentration of reactantsA and B, without
addition of the reactants during the reaction. The following relationships between
two instantaneous concentrations ], and [ ] are observed: [A]:-[A]. = [B]:-[B]. =
[Plz - [Pl + [X]z - [X]..

The kinetic model (KM) can be state as: (i) chemical reaction: A+B ti X
&, P; (i) afundamental assumption: A = A(t), B = B(t), X = X(t), P = P(t) and
mathematical equations (using A in place of [A] and so on): dA/dt = -k,AY’BY* +
ki X2, dB/dt = - koAYBY* + k X¥?, dX/dt = koAY’BY* - ki X¥? - ko X¥* and E ~ X
E = aX+b (from Lambert-Beer); (iii) mathematical inequalities: A, B, X, P> 0
(concentrations); Yo, Y1, Y2, Y3 = 0 (partia orders); ko, ki, ko = 0 (reaction rates); (iv)
experimental data: E = E(t), experimental extinctions; (v) another fundamental assum-
ption: during the reaction, the values ko, ki, kz, Yo, Y1, Y2, Y3 remains constant; (vi)
the objective function: (aX+b-E)? = min.

Thekinetic model problem isahard optimization problem, having the mathem-
atical equations and inequalities, an objective function to be minimized and nine
parametersto bedetermined. Fig. 1 presentsaclassica approach of solving agorithm®,
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Fig. 1. Classical approach of a solving algorithm [Ref. 23]
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The explanation of the classical approach of solving algorithmfrom Fig. Lisas
follows: (a) Theinitial values of the constants are stored into an array of data (which
is optimized iteratively). (b) The iterative module uses the ko...Kz, Yo...ys values to
generate atable with 3’ (3 = |{-1;0;1} |) rows and 7 columns (7 = [{ Ko, K1, K2, Yo, Y1,
Y2, Y3t ). (€) Every row of the table generated in iterative module is used into the
estimative module in order to estimated the compounds concentration variation
during time (reactants A and B, intermediary X and product P). (d) The objective
module uses the { A, B, X, P} estimations to obtain the coefficients of regression
{a, b}. (e) The values {vo...vg} which provide the smallest value of the objective
function Z(aX+b-E)? are saved into { voby...vobs} array. (f) At the end of acomplete
iteration of the iterative module (3’ iterations) the { voh,...vobg} values replace the
old Ko...kz, Yo...ys values. (g) The cycle Iterative module — Estimative module —
Objective module are repeated until the estimation of the unknown parametersko.. ko,
Yo...ys produce a stable approximation (after aiteration cycle their values does not
vary significant).

Method: The genetic algorithms approach: In terms of a genetic algorithm,
the kinetic model problem has: (a) The genetic code of a solution composed from
seven genes [Ko| [Ka| [Kz| Vol 1l V2] Iysl (Fig. 2). (b) Aninitial population that may
represent a chosen number of individuals (let be for example of 100) randomly
selected. (¢) Selection process may give the chance to survival of the fittest for a
given per cent of theindividuals (let's say 50 %), allowing them to pass to the next
generation based on the goodness of each individual that depends on its fitness,
assessed by the objective function, which simultaneously obtain the ‘a and ‘b’
values (of remaining two parameters, Fig. 3). (d) Crossover. Individuals (two for
example) are chose from the population using the selection operator. A double
crossover along the bit strings is chose (usualy randomly) then the values of the
genes are exchanged up to this point and the two new offspring created from this
mating are put into the next generation of the population. If there are recombine
portions of good individuals, this processislikely to create even better individuals
(Fig. 4). (e) Mutation. Introduces random modifications, with some low probability,
aportion of the genes of the new individualswill have their valuesflipped, with the
purpose of maintaining diversity within the population and to inhibit premature
convergence (Fig. 5).

gene chromosome population

Kol| K1 || K2|| Yol| Y1 || Y2|| V3 LA LN INANANE

Fig. 2. Genetic code for a solution of kinetic model problem
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genotype phenotype fitness

decoding EE objective
- —

encoding EE function

Fig. 3. Natural selection for kinetic model problem: genotype, phenotype and fitness

Fig. 4. A double crossing over (involves the breakage and rejoining of
parental chromosomes)

mutation
|I:I---I:II:IID---D| OO [T |I:I---I:IIDD---D

Fig. 5. Mutation of a genotype in kinetic model problem

RESULTSAND DISCUSSION

Biotechnology processes modeled using genetic algorithmss: Ascan be seen
from the previous section, the genetic algorithm is easier to digest and implement
and does not implies as many as classical algorithm do computations for iteration.
A series of hard problems in biotechnology were solved using genetic algorithms,
process kinetic modelling being just one of the genetic algorithm applications.

Lee et al. reported parameter estimation using a hybrid of simplex and genetic
algorithm by introducing the simplex method as an additional operator in the genetic
agorithm. During the reproduction of each iteration step, the hybrid approach applies
the simplex method to atop percentage of the population to produce new candidate
solutionsin the next generation. The remaining of the new population is generated
using the genetic algorithm reproduction scheme (i.e., selection, crossover and
mutation). The genetic algorithm was applied for optimization of three kinetics
reactions, when significant improvements of algebraic methods were obtained: (a)
Carboxylation of phosphoenolpyruvate (PEP) to oxal oacetate (OAA) catalyzed by
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PPC (P-enolpyruvate), when CO. is transformed to phosphate (Pi): CO, + PEP -
OAA + PFi; (b) Transformation of adenosine tri-phosphate (ATP) to adenosine di-
phosphate (ADP) in the presence of OAA transformed to PEP catalyzed by PCK
(phosphoenol pyruvate carboxy-Kinase): OAA + ATP - PEP + ADP + CO; ()
Transformation of phosphoenolpyruvate (PEP) to pyruvate (Pyr) in presence of
ADP (transformed to ATP) catalyzed by pyruvate kinase (PyKi): PEP + ADP -
Pyr + ATP.

Pizarro et al. reported an evolution of the basic genetic algorithm adapted to
the features of the model to explain the industrial fermentation growth rate of acetic
fermentation. Each chromosome representsin their approach a possible combination
of values of the five parametersto optimize, in binary code. There wasimposed an
allowed range of values for each parameter to adopt (as many values as allowed by
the binary codification and the number of significant figures).The initial population
was composed of randomly selected values for the parameters within the allowed
ranges and codified into binary code. The evaluation program decodes the values
of the parameters for each chromosome and then uses them to simulate a batch
process with each sequence of parameters. The simulation a gorithm solves a system
of differential equationsgiving overall rates, viable biomass concentration and rel ati-
onships between the product formation, substrate consumption and the cell growth
using the Runge-Kuttaa gorithm. Theinitial concentrationswerethose of the represen-
tative sequence of the process and the initial viable biomass/total biomass ratio
represents the parameters of the chromosome. There was an oxygen control in the
simulation, because in the real process the oxygenation conditions are enough to
satisfy the demanded amount of oxygen. The algorithm had two important stop
conditions: when no real positive values for one concentration are obtained and
when the process time in the simulation has reached the final process time of the
representative sequence. A new generation with the same number of chromosomes
isformed by applying reproduction, crossover and mutation operators. The chromo-
somes with the best fitting ability obtained the best value in the desirability function
(i.e. closer to 1) and have more chances of being selected and copied into the next
generation. Uniform crossover isused and the five best chromosomes of each gener-
ation pass unchanged to the next generation. These chromosomes are called elitist
chromosomes. Twins and out-of-range chromosomes are disallowed by using a
‘while' loop with filters. When some of these chromosomes are discovered after
crossover, chromosomes al so obtained by crossover substitute them and if they are
discovered after mutation, they are replaced by the original chromosomes in the
same positions but mutated again with the same chances of mutation. With this
process, the mutability is not increased and the number of chromosomes remains
constant. The process stops after five generations without changes higher than a
fixed percentage of the mean response of the elitist chromosomes. The algorithmis
completed five times each time when the program is run. A final run when the
initial population iscomposed of the best chromosomesfound in each of the previous
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runs is performed. The acetic concentrations in the fermentators of the industrial
plant of Vinagrerias Riojanas SA (Logrono, Spain), obtained by NIR, were studied.
The data were obtained for a period of 4 months without changes in the industrial
parameters of the process, i.e. oxygenation conditions and temperature. The average
temperature was 29.5 °C and the oxygenation conditions were enough to satisfy
the oxygen demand and thus the oxygen became a non-limiting substrate. Nowa-
days, the fermentators of the industrial plant work discontinuously with charges.
The batch bioreactors studied were always fed with white wine of the same origin.
The process time was about 30-31 h and 218 compl ete sequences were obtained. An
average concentration sequence was cal cul ated by analyzing the data. Thissequence
is representative of the process to be modelled. The variability in the concentrations
among the sequencesis dueto analytical errors and to factorsthat cannot be controlled
in an industrial process (i.e. differences in the ethanol concentration of the wine
among batch processes). Therefore, the model obtained with this sequence does
not model this variance.

Guangzhu et al.”® improved a simple genetic agorithm developing a hybrid
genetic algorithm, which was used to estimate the kinetic parameters of polyesterifi-
cation between dimer fatty acid and ethylene glycol. The work proved that the
model developed by authors is useful for the polyesterification of dimer acid and
ethylene glycol catalyzed by p-toluene sulfonic acid. The authors used 28.1 g (0.05 mol)
of dimer fatty acid, 3.11 g (0.05 mol) of ethylene glycol and 0.5 % of p-toluene
sulfonic acid asthe catalyst. All were placed into around bottom flask (three necks),
which was equipped with adephlegmator and a pipe for the nitrogen. Nitrogen was
introduced into the flask to remove the oxygen and to prevent the oxidation of the
materials. The flask was placed into an oil bath at 170 °C. After 0.5 h reaction, the
nitrogen was stopped and vacuum pumping was used to remove the water from
reactant. The reaction continued 8-10 h in vacuum. The acid value of the reactant
was measured at certain reaction times during the progress of the reaction. The
estimation of the parameterswas carried out in three steps. First, the order of reaction
was confirmed using the assumption of equal activity. Second, experiments were
designed to estimate the parameters of rate constant of the reaction between carbo-
xylic group on the monomer and hydroxyl group of the polymers. Excess monomer
was supplemented into the reactant after it had reacted for several hours with the
materials proportion of 1:1 and the reactions could be ignored except for the added
monomer and the polymers. Finally, obtained values were introduced into the rate
equationsto obtain the val ues of reaction rates between carboxylic end of the monomer
and hydroxy! group of the monomer and carboxy! on the polymersand hydroxyl on
the polymers.

Moscovitch et al.?” used the genetic algorithm in kinetic analysis of multiple
proton transfer reactions. They demonstrated that the search of the rate constants
can be fully automated using the genetic algorithm approach leading to a detailed
kinetic analysis dueto ability of identification of multiequilibria systems. A system
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with inherent complexity made of seven independent variables consisting of aproton
emitter (apyranine molecule that gect a proton when excited by a photon), indicator
(fluorescein, a pH indicator with two proton-binding sites represented by the
oxyanion of the xanthene ring and the carboxylate of the benzene) and bicarbonate
anion (HCO;3~, a buffer molecule with unknown concentration that reacts with the
proton but not generate a measurable signal) was investigated. The complexity of
the studied system is comparable to the studying the protonation dynamics of an
indicator attached to a protein®®*®. The authors used a 100 mM NaCl aqueous solution
supplemented with pyranine (20 mM) and fluorescein (10 mM), equilibrated with
the air at two pH values (6.8 and 7.3) and subjected to atrain of laser pulses (1-1.5
mJ/pulse; 10 Hz, 355 nm, 3 ns full-width half maximum). The absorption transients
were recorded at 458 and 496 nm, where pyranine and fluorescein are, respec-
tively, absorbing (the time resolutions were either 30 ns or 300 ns per data point
and were converted into concentration units using the extinction coefficients 24000
Mt cm? for pyranine and 50000 M cm for fluorescein). Two reactants of the
system are directly observable. The rate constants of protonation of these reactants
were measured (manual analysis) and the complexity of the system was increased
by taking into consideration the concentration of the bicarbonate. The parameter's
space was used in order to search for the uniqueness. The values of adjustable
parameters were used to reconstruct the signal and to calculate the fittest. The first
generation consisted of 100 phenotypes (randomly selected values for the adjustable
parameters). The best-fit phenotype was cloned and replaces the worst-fitting one.
The genetic algorithm was searching for the minimum of the fitness function in a
seven-dimensional space. Each runslast 3000 generations from 2 to 6 h depending
on the processor of the computer used. A stable solution in terms of no tendency to
drift into anew set of adjustable parameters was search. The genetic algorithm was
considered unique when the target signal s were noi sel ess (the values derived by the
program were identical to those used to create the signal). The results revealed that
genetic algorithm isareliable method for searching a solution of kinetics equations
when the rate constants must be determines proving that the system work even if
the concentration of one reactant is unknown. The utility of the genetic algorithmin
solving chemical kinetic problems have also been proved by several researchers™®.

Popelier et al.** modelled the mutagenic activity of 23 triazines and 24 haloge-
nated hydroxyfuranonesin order to generate significantly statistic valid quantitative
models and to identify the active centre of the investigated compounds. A genetic
algorithm was used to optimize the number of descriptors of the best model expressed
as best possible coefficient of determination and leave-one-out cross validation
coefficient. The genetic algorithm introduced a population of 256 randomly selected
models and the cross-validation error was the fitness function at a mutation rate of
0.003 and for a maximum number of generations equal to 200. The analysis sugg-
ested a preferred mechanistic pathway for theinitial hydroxylation of the triazines
and el uci dates the mechanistic ambival ence of hydroxyfuranones. A similar approach
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was applied in investigation of steroid binding affinity and antibacterial activity of
nitrofuran derivatives®. The genetic agorithm was used in order to select variable
in the best performing model. Similar approach was used by Matsuda et al.* when
the authors were able through their design system cyclopaedically to generated ion
liquids structures corresponding to particular physical properties.

Conclusion

Having a population of abstract representations (the genotype of the genome)
of candidate sol utions (phenotypes) genetic al gorithm optimization problem evolves
toward better solutions simulating the survival of the fittest among individual s over
consecutive generation for solving the problem as living organisms evolvein nature.

The usage of genetic algorithm may reduce the algorithm complexity as was
shown in kinetic model hard optimization problem.

Key hard problems solved using genetic genetic a gorithms include modelling
industrial fermentation growth rate of acetic fermentation, heavy oil thermal cracking
3-lumping, fluid catalytic cracking unit main fractionator, reverse engineering of
mol ecular mechanical machines, chemical kinetic problemsand selection of descri-
ptors used in quantitative structure-property/activity relationship models.
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